Metamath Proof Explorer


Theorem eel12131

Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017)

Ref Expression
Hypotheses eel12131.1
|- ( ph -> ps )
eel12131.2
|- ( ( ph /\ ch ) -> th )
eel12131.3
|- ( ( ph /\ ta ) -> et )
eel12131.4
|- ( ( ps /\ th /\ et ) -> ze )
Assertion eel12131
|- ( ( ph /\ ch /\ ta ) -> ze )

Proof

Step Hyp Ref Expression
1 eel12131.1
 |-  ( ph -> ps )
2 eel12131.2
 |-  ( ( ph /\ ch ) -> th )
3 eel12131.3
 |-  ( ( ph /\ ta ) -> et )
4 eel12131.4
 |-  ( ( ps /\ th /\ et ) -> ze )
5 4 3exp
 |-  ( ps -> ( th -> ( et -> ze ) ) )
6 1 2 5 syl2imc
 |-  ( ( ph /\ ch ) -> ( ph -> ( et -> ze ) ) )
7 6 ex
 |-  ( ph -> ( ch -> ( ph -> ( et -> ze ) ) ) )
8 7 pm2.43b
 |-  ( ch -> ( ph -> ( et -> ze ) ) )
9 8 com13
 |-  ( et -> ( ph -> ( ch -> ze ) ) )
10 3 9 syl
 |-  ( ( ph /\ ta ) -> ( ph -> ( ch -> ze ) ) )
11 10 ex
 |-  ( ph -> ( ta -> ( ph -> ( ch -> ze ) ) ) )
12 11 pm2.43b
 |-  ( ta -> ( ph -> ( ch -> ze ) ) )
13 12 3imp231
 |-  ( ( ph /\ ch /\ ta ) -> ze )