Metamath Proof Explorer


Theorem eel2131

Description: syl2an with antecedents in standard conjunction form. (Contributed by Alan Sare, 26-Aug-2016)

Ref Expression
Hypotheses eel2131.1
|- ( ( ph /\ ps ) -> ch )
eel2131.2
|- ( ( ph /\ th ) -> ta )
eel2131.3
|- ( ( ch /\ ta ) -> et )
Assertion eel2131
|- ( ( ph /\ ps /\ th ) -> et )

Proof

Step Hyp Ref Expression
1 eel2131.1
 |-  ( ( ph /\ ps ) -> ch )
2 eel2131.2
 |-  ( ( ph /\ th ) -> ta )
3 eel2131.3
 |-  ( ( ch /\ ta ) -> et )
4 1 2 3 syl2an
 |-  ( ( ( ph /\ ps ) /\ ( ph /\ th ) ) -> et )
5 4 3impdi
 |-  ( ( ph /\ ps /\ th ) -> et )