Metamath Proof Explorer


Theorem eelT0

Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eelT0.1
|- ( T. -> ph )
eelT0.2
|- ps
eelT0.3
|- ( ( ph /\ ps ) -> ch )
Assertion eelT0
|- ch

Proof

Step Hyp Ref Expression
1 eelT0.1
 |-  ( T. -> ph )
2 eelT0.2
 |-  ps
3 eelT0.3
 |-  ( ( ph /\ ps ) -> ch )
4 1 3 sylan
 |-  ( ( T. /\ ps ) -> ch )
5 2 4 mpan2
 |-  ( T. -> ch )
6 5 mptru
 |-  ch