Metamath Proof Explorer


Theorem eelT11

Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eelT11.1
|- ( T. -> ph )
eelT11.2
|- ( ps -> ch )
eelT11.3
|- ( ps -> th )
eelT11.4
|- ( ( ph /\ ch /\ th ) -> ta )
Assertion eelT11
|- ( ps -> ta )

Proof

Step Hyp Ref Expression
1 eelT11.1
 |-  ( T. -> ph )
2 eelT11.2
 |-  ( ps -> ch )
3 eelT11.3
 |-  ( ps -> th )
4 eelT11.4
 |-  ( ( ph /\ ch /\ th ) -> ta )
5 3anass
 |-  ( ( T. /\ ps /\ ps ) <-> ( T. /\ ( ps /\ ps ) ) )
6 truan
 |-  ( ( T. /\ ( ps /\ ps ) ) <-> ( ps /\ ps ) )
7 anidm
 |-  ( ( ps /\ ps ) <-> ps )
8 5 6 7 3bitri
 |-  ( ( T. /\ ps /\ ps ) <-> ps )
9 1 4 syl3an1
 |-  ( ( T. /\ ch /\ th ) -> ta )
10 2 9 syl3an2
 |-  ( ( T. /\ ps /\ th ) -> ta )
11 3 10 syl3an3
 |-  ( ( T. /\ ps /\ ps ) -> ta )
12 8 11 sylbir
 |-  ( ps -> ta )