Step |
Hyp |
Ref |
Expression |
1 |
|
eelT11.1 |
|- ( T. -> ph ) |
2 |
|
eelT11.2 |
|- ( ps -> ch ) |
3 |
|
eelT11.3 |
|- ( ps -> th ) |
4 |
|
eelT11.4 |
|- ( ( ph /\ ch /\ th ) -> ta ) |
5 |
|
3anass |
|- ( ( T. /\ ps /\ ps ) <-> ( T. /\ ( ps /\ ps ) ) ) |
6 |
|
truan |
|- ( ( T. /\ ( ps /\ ps ) ) <-> ( ps /\ ps ) ) |
7 |
|
anidm |
|- ( ( ps /\ ps ) <-> ps ) |
8 |
5 6 7
|
3bitri |
|- ( ( T. /\ ps /\ ps ) <-> ps ) |
9 |
1 4
|
syl3an1 |
|- ( ( T. /\ ch /\ th ) -> ta ) |
10 |
2 9
|
syl3an2 |
|- ( ( T. /\ ps /\ th ) -> ta ) |
11 |
3 10
|
syl3an3 |
|- ( ( T. /\ ps /\ ps ) -> ta ) |
12 |
8 11
|
sylbir |
|- ( ps -> ta ) |