Metamath Proof Explorer


Theorem eelT12

Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eelT12.1
|- ( T. -> ph )
eelT12.2
|- ( ps -> ch )
eelT12.3
|- ( th -> ta )
eelT12.4
|- ( ( ph /\ ch /\ ta ) -> et )
Assertion eelT12
|- ( ( ps /\ th ) -> et )

Proof

Step Hyp Ref Expression
1 eelT12.1
 |-  ( T. -> ph )
2 eelT12.2
 |-  ( ps -> ch )
3 eelT12.3
 |-  ( th -> ta )
4 eelT12.4
 |-  ( ( ph /\ ch /\ ta ) -> et )
5 3anass
 |-  ( ( T. /\ ps /\ th ) <-> ( T. /\ ( ps /\ th ) ) )
6 truan
 |-  ( ( T. /\ ( ps /\ th ) ) <-> ( ps /\ th ) )
7 5 6 bitri
 |-  ( ( T. /\ ps /\ th ) <-> ( ps /\ th ) )
8 1 4 syl3an1
 |-  ( ( T. /\ ch /\ ta ) -> et )
9 2 8 syl3an2
 |-  ( ( T. /\ ps /\ ta ) -> et )
10 3 9 syl3an3
 |-  ( ( T. /\ ps /\ th ) -> et )
11 7 10 sylbir
 |-  ( ( ps /\ th ) -> et )