Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eelT12.1 | |- ( T. -> ph ) |
|
eelT12.2 | |- ( ps -> ch ) |
||
eelT12.3 | |- ( th -> ta ) |
||
eelT12.4 | |- ( ( ph /\ ch /\ ta ) -> et ) |
||
Assertion | eelT12 | |- ( ( ps /\ th ) -> et ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eelT12.1 | |- ( T. -> ph ) |
|
2 | eelT12.2 | |- ( ps -> ch ) |
|
3 | eelT12.3 | |- ( th -> ta ) |
|
4 | eelT12.4 | |- ( ( ph /\ ch /\ ta ) -> et ) |
|
5 | 3anass | |- ( ( T. /\ ps /\ th ) <-> ( T. /\ ( ps /\ th ) ) ) |
|
6 | truan | |- ( ( T. /\ ( ps /\ th ) ) <-> ( ps /\ th ) ) |
|
7 | 5 6 | bitri | |- ( ( T. /\ ps /\ th ) <-> ( ps /\ th ) ) |
8 | 1 4 | syl3an1 | |- ( ( T. /\ ch /\ ta ) -> et ) |
9 | 2 8 | syl3an2 | |- ( ( T. /\ ps /\ ta ) -> et ) |
10 | 3 9 | syl3an3 | |- ( ( T. /\ ps /\ th ) -> et ) |
11 | 7 10 | sylbir | |- ( ( ps /\ th ) -> et ) |