Metamath Proof Explorer


Theorem eelTT

Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eelTT.1
|- ( T. -> ph )
eelTT.2
|- ( T. -> ps )
eelTT.3
|- ( ( ph /\ ps ) -> ch )
Assertion eelTT
|- ch

Proof

Step Hyp Ref Expression
1 eelTT.1
 |-  ( T. -> ph )
2 eelTT.2
 |-  ( T. -> ps )
3 eelTT.3
 |-  ( ( ph /\ ps ) -> ch )
4 truan
 |-  ( ( T. /\ ps ) <-> ps )
5 1 3 sylan
 |-  ( ( T. /\ ps ) -> ch )
6 4 5 sylbir
 |-  ( ps -> ch )
7 2 6 syl
 |-  ( T. -> ch )
8 7 mptru
 |-  ch