Step |
Hyp |
Ref |
Expression |
1 |
|
eelTTT.1 |
|- ( T. -> ph ) |
2 |
|
eelTTT.2 |
|- ( T. -> ps ) |
3 |
|
eelTTT.3 |
|- ( T. -> ch ) |
4 |
|
eelTTT.4 |
|- ( ( ph /\ ps /\ ch ) -> th ) |
5 |
|
truan |
|- ( ( T. /\ ch ) <-> ch ) |
6 |
|
3anass |
|- ( ( T. /\ ps /\ ch ) <-> ( T. /\ ( ps /\ ch ) ) ) |
7 |
|
truan |
|- ( ( T. /\ ( ps /\ ch ) ) <-> ( ps /\ ch ) ) |
8 |
6 7
|
bitri |
|- ( ( T. /\ ps /\ ch ) <-> ( ps /\ ch ) ) |
9 |
1 4
|
syl3an1 |
|- ( ( T. /\ ps /\ ch ) -> th ) |
10 |
8 9
|
sylbir |
|- ( ( ps /\ ch ) -> th ) |
11 |
2 10
|
sylan |
|- ( ( T. /\ ch ) -> th ) |
12 |
5 11
|
sylbir |
|- ( ch -> th ) |
13 |
3 12
|
syl |
|- ( T. -> th ) |
14 |
13
|
mptru |
|- th |