Metamath Proof Explorer


Theorem eexinst01

Description: exinst01 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eexinst01.1
|- E. x ps
eexinst01.2
|- ( ph -> ( ps -> ch ) )
eexinst01.3
|- ( ph -> A. x ph )
eexinst01.4
|- ( ch -> A. x ch )
Assertion eexinst01
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 eexinst01.1
 |-  E. x ps
2 eexinst01.2
 |-  ( ph -> ( ps -> ch ) )
3 eexinst01.3
 |-  ( ph -> A. x ph )
4 eexinst01.4
 |-  ( ch -> A. x ch )
5 3 4 2 exlimdh
 |-  ( ph -> ( E. x ps -> ch ) )
6 1 5 mpi
 |-  ( ph -> ch )