| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0cn |
|- 0 e. CC |
| 2 |
|
eqid |
|- ( n e. NN0 |-> ( ( 0 ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( 0 ^ n ) / ( ! ` n ) ) ) |
| 3 |
2
|
efcvg |
|- ( 0 e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( 0 ^ n ) / ( ! ` n ) ) ) ) ~~> ( exp ` 0 ) ) |
| 4 |
1 3
|
ax-mp |
|- seq 0 ( + , ( n e. NN0 |-> ( ( 0 ^ n ) / ( ! ` n ) ) ) ) ~~> ( exp ` 0 ) |
| 5 |
|
eqid |
|- 0 = 0 |
| 6 |
2
|
ef0lem |
|- ( 0 = 0 -> seq 0 ( + , ( n e. NN0 |-> ( ( 0 ^ n ) / ( ! ` n ) ) ) ) ~~> 1 ) |
| 7 |
5 6
|
ax-mp |
|- seq 0 ( + , ( n e. NN0 |-> ( ( 0 ^ n ) / ( ! ` n ) ) ) ) ~~> 1 |
| 8 |
|
climuni |
|- ( ( seq 0 ( + , ( n e. NN0 |-> ( ( 0 ^ n ) / ( ! ` n ) ) ) ) ~~> ( exp ` 0 ) /\ seq 0 ( + , ( n e. NN0 |-> ( ( 0 ^ n ) / ( ! ` n ) ) ) ) ~~> 1 ) -> ( exp ` 0 ) = 1 ) |
| 9 |
4 7 8
|
mp2an |
|- ( exp ` 0 ) = 1 |