| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ef01bnd.1 |  |-  F = ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) | 
						
							| 2 |  | ax-icn |  |-  _i e. CC | 
						
							| 3 |  | 0xr |  |-  0 e. RR* | 
						
							| 4 |  | 1re |  |-  1 e. RR | 
						
							| 5 |  | elioc2 |  |-  ( ( 0 e. RR* /\ 1 e. RR ) -> ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) ) | 
						
							| 6 | 3 4 5 | mp2an |  |-  ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) | 
						
							| 7 | 6 | simp1bi |  |-  ( A e. ( 0 (,] 1 ) -> A e. RR ) | 
						
							| 8 | 7 | recnd |  |-  ( A e. ( 0 (,] 1 ) -> A e. CC ) | 
						
							| 9 |  | mulcl |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) | 
						
							| 10 | 2 8 9 | sylancr |  |-  ( A e. ( 0 (,] 1 ) -> ( _i x. A ) e. CC ) | 
						
							| 11 |  | 4nn0 |  |-  4 e. NN0 | 
						
							| 12 | 1 | eftlcl |  |-  ( ( ( _i x. A ) e. CC /\ 4 e. NN0 ) -> sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) e. CC ) | 
						
							| 13 | 10 11 12 | sylancl |  |-  ( A e. ( 0 (,] 1 ) -> sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) e. CC ) | 
						
							| 14 | 13 | abscld |  |-  ( A e. ( 0 (,] 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) e. RR ) | 
						
							| 15 |  | reexpcl |  |-  ( ( A e. RR /\ 4 e. NN0 ) -> ( A ^ 4 ) e. RR ) | 
						
							| 16 | 7 11 15 | sylancl |  |-  ( A e. ( 0 (,] 1 ) -> ( A ^ 4 ) e. RR ) | 
						
							| 17 |  | 4re |  |-  4 e. RR | 
						
							| 18 | 17 4 | readdcli |  |-  ( 4 + 1 ) e. RR | 
						
							| 19 |  | faccl |  |-  ( 4 e. NN0 -> ( ! ` 4 ) e. NN ) | 
						
							| 20 | 11 19 | ax-mp |  |-  ( ! ` 4 ) e. NN | 
						
							| 21 |  | 4nn |  |-  4 e. NN | 
						
							| 22 | 20 21 | nnmulcli |  |-  ( ( ! ` 4 ) x. 4 ) e. NN | 
						
							| 23 |  | nndivre |  |-  ( ( ( 4 + 1 ) e. RR /\ ( ( ! ` 4 ) x. 4 ) e. NN ) -> ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) e. RR ) | 
						
							| 24 | 18 22 23 | mp2an |  |-  ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) e. RR | 
						
							| 25 |  | remulcl |  |-  ( ( ( A ^ 4 ) e. RR /\ ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) e. RR ) -> ( ( A ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) e. RR ) | 
						
							| 26 | 16 24 25 | sylancl |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) e. RR ) | 
						
							| 27 |  | 6nn |  |-  6 e. NN | 
						
							| 28 |  | nndivre |  |-  ( ( ( A ^ 4 ) e. RR /\ 6 e. NN ) -> ( ( A ^ 4 ) / 6 ) e. RR ) | 
						
							| 29 | 16 27 28 | sylancl |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) / 6 ) e. RR ) | 
						
							| 30 |  | eqid |  |-  ( n e. NN0 |-> ( ( ( abs ` ( _i x. A ) ) ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( ( abs ` ( _i x. A ) ) ^ n ) / ( ! ` n ) ) ) | 
						
							| 31 |  | eqid |  |-  ( n e. NN0 |-> ( ( ( ( abs ` ( _i x. A ) ) ^ 4 ) / ( ! ` 4 ) ) x. ( ( 1 / ( 4 + 1 ) ) ^ n ) ) ) = ( n e. NN0 |-> ( ( ( ( abs ` ( _i x. A ) ) ^ 4 ) / ( ! ` 4 ) ) x. ( ( 1 / ( 4 + 1 ) ) ^ n ) ) ) | 
						
							| 32 | 21 | a1i |  |-  ( A e. ( 0 (,] 1 ) -> 4 e. NN ) | 
						
							| 33 |  | absmul |  |-  ( ( _i e. CC /\ A e. CC ) -> ( abs ` ( _i x. A ) ) = ( ( abs ` _i ) x. ( abs ` A ) ) ) | 
						
							| 34 | 2 8 33 | sylancr |  |-  ( A e. ( 0 (,] 1 ) -> ( abs ` ( _i x. A ) ) = ( ( abs ` _i ) x. ( abs ` A ) ) ) | 
						
							| 35 |  | absi |  |-  ( abs ` _i ) = 1 | 
						
							| 36 | 35 | oveq1i |  |-  ( ( abs ` _i ) x. ( abs ` A ) ) = ( 1 x. ( abs ` A ) ) | 
						
							| 37 | 6 | simp2bi |  |-  ( A e. ( 0 (,] 1 ) -> 0 < A ) | 
						
							| 38 | 7 37 | elrpd |  |-  ( A e. ( 0 (,] 1 ) -> A e. RR+ ) | 
						
							| 39 |  | rpre |  |-  ( A e. RR+ -> A e. RR ) | 
						
							| 40 |  | rpge0 |  |-  ( A e. RR+ -> 0 <_ A ) | 
						
							| 41 | 39 40 | absidd |  |-  ( A e. RR+ -> ( abs ` A ) = A ) | 
						
							| 42 | 38 41 | syl |  |-  ( A e. ( 0 (,] 1 ) -> ( abs ` A ) = A ) | 
						
							| 43 | 42 | oveq2d |  |-  ( A e. ( 0 (,] 1 ) -> ( 1 x. ( abs ` A ) ) = ( 1 x. A ) ) | 
						
							| 44 | 36 43 | eqtrid |  |-  ( A e. ( 0 (,] 1 ) -> ( ( abs ` _i ) x. ( abs ` A ) ) = ( 1 x. A ) ) | 
						
							| 45 | 8 | mullidd |  |-  ( A e. ( 0 (,] 1 ) -> ( 1 x. A ) = A ) | 
						
							| 46 | 34 44 45 | 3eqtrd |  |-  ( A e. ( 0 (,] 1 ) -> ( abs ` ( _i x. A ) ) = A ) | 
						
							| 47 | 6 | simp3bi |  |-  ( A e. ( 0 (,] 1 ) -> A <_ 1 ) | 
						
							| 48 | 46 47 | eqbrtrd |  |-  ( A e. ( 0 (,] 1 ) -> ( abs ` ( _i x. A ) ) <_ 1 ) | 
						
							| 49 | 1 30 31 32 10 48 | eftlub |  |-  ( A e. ( 0 (,] 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) <_ ( ( ( abs ` ( _i x. A ) ) ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) ) | 
						
							| 50 | 46 | oveq1d |  |-  ( A e. ( 0 (,] 1 ) -> ( ( abs ` ( _i x. A ) ) ^ 4 ) = ( A ^ 4 ) ) | 
						
							| 51 | 50 | oveq1d |  |-  ( A e. ( 0 (,] 1 ) -> ( ( ( abs ` ( _i x. A ) ) ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) = ( ( A ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) ) | 
						
							| 52 | 49 51 | breqtrd |  |-  ( A e. ( 0 (,] 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) <_ ( ( A ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) ) | 
						
							| 53 |  | 3pos |  |-  0 < 3 | 
						
							| 54 |  | 0re |  |-  0 e. RR | 
						
							| 55 |  | 3re |  |-  3 e. RR | 
						
							| 56 |  | 5re |  |-  5 e. RR | 
						
							| 57 | 54 55 56 | ltadd1i |  |-  ( 0 < 3 <-> ( 0 + 5 ) < ( 3 + 5 ) ) | 
						
							| 58 | 53 57 | mpbi |  |-  ( 0 + 5 ) < ( 3 + 5 ) | 
						
							| 59 |  | 5cn |  |-  5 e. CC | 
						
							| 60 | 59 | addlidi |  |-  ( 0 + 5 ) = 5 | 
						
							| 61 |  | cu2 |  |-  ( 2 ^ 3 ) = 8 | 
						
							| 62 |  | 5p3e8 |  |-  ( 5 + 3 ) = 8 | 
						
							| 63 |  | 3cn |  |-  3 e. CC | 
						
							| 64 | 59 63 | addcomi |  |-  ( 5 + 3 ) = ( 3 + 5 ) | 
						
							| 65 | 61 62 64 | 3eqtr2ri |  |-  ( 3 + 5 ) = ( 2 ^ 3 ) | 
						
							| 66 | 58 60 65 | 3brtr3i |  |-  5 < ( 2 ^ 3 ) | 
						
							| 67 |  | 2re |  |-  2 e. RR | 
						
							| 68 |  | 1le2 |  |-  1 <_ 2 | 
						
							| 69 |  | 4z |  |-  4 e. ZZ | 
						
							| 70 |  | 3lt4 |  |-  3 < 4 | 
						
							| 71 | 55 17 70 | ltleii |  |-  3 <_ 4 | 
						
							| 72 |  | 3z |  |-  3 e. ZZ | 
						
							| 73 | 72 | eluz1i |  |-  ( 4 e. ( ZZ>= ` 3 ) <-> ( 4 e. ZZ /\ 3 <_ 4 ) ) | 
						
							| 74 | 69 71 73 | mpbir2an |  |-  4 e. ( ZZ>= ` 3 ) | 
						
							| 75 |  | leexp2a |  |-  ( ( 2 e. RR /\ 1 <_ 2 /\ 4 e. ( ZZ>= ` 3 ) ) -> ( 2 ^ 3 ) <_ ( 2 ^ 4 ) ) | 
						
							| 76 | 67 68 74 75 | mp3an |  |-  ( 2 ^ 3 ) <_ ( 2 ^ 4 ) | 
						
							| 77 |  | 8re |  |-  8 e. RR | 
						
							| 78 | 61 77 | eqeltri |  |-  ( 2 ^ 3 ) e. RR | 
						
							| 79 |  | 2nn |  |-  2 e. NN | 
						
							| 80 |  | nnexpcl |  |-  ( ( 2 e. NN /\ 4 e. NN0 ) -> ( 2 ^ 4 ) e. NN ) | 
						
							| 81 | 79 11 80 | mp2an |  |-  ( 2 ^ 4 ) e. NN | 
						
							| 82 | 81 | nnrei |  |-  ( 2 ^ 4 ) e. RR | 
						
							| 83 | 56 78 82 | ltletri |  |-  ( ( 5 < ( 2 ^ 3 ) /\ ( 2 ^ 3 ) <_ ( 2 ^ 4 ) ) -> 5 < ( 2 ^ 4 ) ) | 
						
							| 84 | 66 76 83 | mp2an |  |-  5 < ( 2 ^ 4 ) | 
						
							| 85 |  | 6re |  |-  6 e. RR | 
						
							| 86 | 85 82 | remulcli |  |-  ( 6 x. ( 2 ^ 4 ) ) e. RR | 
						
							| 87 |  | 6pos |  |-  0 < 6 | 
						
							| 88 | 81 | nngt0i |  |-  0 < ( 2 ^ 4 ) | 
						
							| 89 | 85 82 87 88 | mulgt0ii |  |-  0 < ( 6 x. ( 2 ^ 4 ) ) | 
						
							| 90 | 56 82 86 89 | ltdiv1ii |  |-  ( 5 < ( 2 ^ 4 ) <-> ( 5 / ( 6 x. ( 2 ^ 4 ) ) ) < ( ( 2 ^ 4 ) / ( 6 x. ( 2 ^ 4 ) ) ) ) | 
						
							| 91 | 84 90 | mpbi |  |-  ( 5 / ( 6 x. ( 2 ^ 4 ) ) ) < ( ( 2 ^ 4 ) / ( 6 x. ( 2 ^ 4 ) ) ) | 
						
							| 92 |  | df-5 |  |-  5 = ( 4 + 1 ) | 
						
							| 93 |  | df-4 |  |-  4 = ( 3 + 1 ) | 
						
							| 94 | 93 | fveq2i |  |-  ( ! ` 4 ) = ( ! ` ( 3 + 1 ) ) | 
						
							| 95 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 96 |  | facp1 |  |-  ( 3 e. NN0 -> ( ! ` ( 3 + 1 ) ) = ( ( ! ` 3 ) x. ( 3 + 1 ) ) ) | 
						
							| 97 | 95 96 | ax-mp |  |-  ( ! ` ( 3 + 1 ) ) = ( ( ! ` 3 ) x. ( 3 + 1 ) ) | 
						
							| 98 |  | sq2 |  |-  ( 2 ^ 2 ) = 4 | 
						
							| 99 | 98 93 | eqtr2i |  |-  ( 3 + 1 ) = ( 2 ^ 2 ) | 
						
							| 100 | 99 | oveq2i |  |-  ( ( ! ` 3 ) x. ( 3 + 1 ) ) = ( ( ! ` 3 ) x. ( 2 ^ 2 ) ) | 
						
							| 101 | 94 97 100 | 3eqtri |  |-  ( ! ` 4 ) = ( ( ! ` 3 ) x. ( 2 ^ 2 ) ) | 
						
							| 102 | 101 | oveq1i |  |-  ( ( ! ` 4 ) x. ( 2 ^ 2 ) ) = ( ( ( ! ` 3 ) x. ( 2 ^ 2 ) ) x. ( 2 ^ 2 ) ) | 
						
							| 103 | 98 | oveq2i |  |-  ( ( ! ` 4 ) x. ( 2 ^ 2 ) ) = ( ( ! ` 4 ) x. 4 ) | 
						
							| 104 |  | fac3 |  |-  ( ! ` 3 ) = 6 | 
						
							| 105 |  | 6cn |  |-  6 e. CC | 
						
							| 106 | 104 105 | eqeltri |  |-  ( ! ` 3 ) e. CC | 
						
							| 107 | 17 | recni |  |-  4 e. CC | 
						
							| 108 | 98 107 | eqeltri |  |-  ( 2 ^ 2 ) e. CC | 
						
							| 109 | 106 108 108 | mulassi |  |-  ( ( ( ! ` 3 ) x. ( 2 ^ 2 ) ) x. ( 2 ^ 2 ) ) = ( ( ! ` 3 ) x. ( ( 2 ^ 2 ) x. ( 2 ^ 2 ) ) ) | 
						
							| 110 | 102 103 109 | 3eqtr3i |  |-  ( ( ! ` 4 ) x. 4 ) = ( ( ! ` 3 ) x. ( ( 2 ^ 2 ) x. ( 2 ^ 2 ) ) ) | 
						
							| 111 |  | 2p2e4 |  |-  ( 2 + 2 ) = 4 | 
						
							| 112 | 111 | oveq2i |  |-  ( 2 ^ ( 2 + 2 ) ) = ( 2 ^ 4 ) | 
						
							| 113 |  | 2cn |  |-  2 e. CC | 
						
							| 114 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 115 |  | expadd |  |-  ( ( 2 e. CC /\ 2 e. NN0 /\ 2 e. NN0 ) -> ( 2 ^ ( 2 + 2 ) ) = ( ( 2 ^ 2 ) x. ( 2 ^ 2 ) ) ) | 
						
							| 116 | 113 114 114 115 | mp3an |  |-  ( 2 ^ ( 2 + 2 ) ) = ( ( 2 ^ 2 ) x. ( 2 ^ 2 ) ) | 
						
							| 117 | 112 116 | eqtr3i |  |-  ( 2 ^ 4 ) = ( ( 2 ^ 2 ) x. ( 2 ^ 2 ) ) | 
						
							| 118 | 117 | oveq2i |  |-  ( ( ! ` 3 ) x. ( 2 ^ 4 ) ) = ( ( ! ` 3 ) x. ( ( 2 ^ 2 ) x. ( 2 ^ 2 ) ) ) | 
						
							| 119 | 104 | oveq1i |  |-  ( ( ! ` 3 ) x. ( 2 ^ 4 ) ) = ( 6 x. ( 2 ^ 4 ) ) | 
						
							| 120 | 110 118 119 | 3eqtr2ri |  |-  ( 6 x. ( 2 ^ 4 ) ) = ( ( ! ` 4 ) x. 4 ) | 
						
							| 121 | 92 120 | oveq12i |  |-  ( 5 / ( 6 x. ( 2 ^ 4 ) ) ) = ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) | 
						
							| 122 | 81 | nncni |  |-  ( 2 ^ 4 ) e. CC | 
						
							| 123 | 122 | mullidi |  |-  ( 1 x. ( 2 ^ 4 ) ) = ( 2 ^ 4 ) | 
						
							| 124 | 123 | oveq1i |  |-  ( ( 1 x. ( 2 ^ 4 ) ) / ( 6 x. ( 2 ^ 4 ) ) ) = ( ( 2 ^ 4 ) / ( 6 x. ( 2 ^ 4 ) ) ) | 
						
							| 125 | 81 | nnne0i |  |-  ( 2 ^ 4 ) =/= 0 | 
						
							| 126 | 122 125 | dividi |  |-  ( ( 2 ^ 4 ) / ( 2 ^ 4 ) ) = 1 | 
						
							| 127 | 126 | oveq2i |  |-  ( ( 1 / 6 ) x. ( ( 2 ^ 4 ) / ( 2 ^ 4 ) ) ) = ( ( 1 / 6 ) x. 1 ) | 
						
							| 128 |  | ax-1cn |  |-  1 e. CC | 
						
							| 129 | 85 87 | gt0ne0ii |  |-  6 =/= 0 | 
						
							| 130 | 128 105 122 122 129 125 | divmuldivi |  |-  ( ( 1 / 6 ) x. ( ( 2 ^ 4 ) / ( 2 ^ 4 ) ) ) = ( ( 1 x. ( 2 ^ 4 ) ) / ( 6 x. ( 2 ^ 4 ) ) ) | 
						
							| 131 | 85 129 | rereccli |  |-  ( 1 / 6 ) e. RR | 
						
							| 132 | 131 | recni |  |-  ( 1 / 6 ) e. CC | 
						
							| 133 | 132 | mulridi |  |-  ( ( 1 / 6 ) x. 1 ) = ( 1 / 6 ) | 
						
							| 134 | 127 130 133 | 3eqtr3i |  |-  ( ( 1 x. ( 2 ^ 4 ) ) / ( 6 x. ( 2 ^ 4 ) ) ) = ( 1 / 6 ) | 
						
							| 135 | 124 134 | eqtr3i |  |-  ( ( 2 ^ 4 ) / ( 6 x. ( 2 ^ 4 ) ) ) = ( 1 / 6 ) | 
						
							| 136 | 91 121 135 | 3brtr3i |  |-  ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) < ( 1 / 6 ) | 
						
							| 137 |  | rpexpcl |  |-  ( ( A e. RR+ /\ 4 e. ZZ ) -> ( A ^ 4 ) e. RR+ ) | 
						
							| 138 | 38 69 137 | sylancl |  |-  ( A e. ( 0 (,] 1 ) -> ( A ^ 4 ) e. RR+ ) | 
						
							| 139 |  | elrp |  |-  ( ( A ^ 4 ) e. RR+ <-> ( ( A ^ 4 ) e. RR /\ 0 < ( A ^ 4 ) ) ) | 
						
							| 140 |  | ltmul2 |  |-  ( ( ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) e. RR /\ ( 1 / 6 ) e. RR /\ ( ( A ^ 4 ) e. RR /\ 0 < ( A ^ 4 ) ) ) -> ( ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) < ( 1 / 6 ) <-> ( ( A ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) < ( ( A ^ 4 ) x. ( 1 / 6 ) ) ) ) | 
						
							| 141 | 24 131 140 | mp3an12 |  |-  ( ( ( A ^ 4 ) e. RR /\ 0 < ( A ^ 4 ) ) -> ( ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) < ( 1 / 6 ) <-> ( ( A ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) < ( ( A ^ 4 ) x. ( 1 / 6 ) ) ) ) | 
						
							| 142 | 139 141 | sylbi |  |-  ( ( A ^ 4 ) e. RR+ -> ( ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) < ( 1 / 6 ) <-> ( ( A ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) < ( ( A ^ 4 ) x. ( 1 / 6 ) ) ) ) | 
						
							| 143 | 138 142 | syl |  |-  ( A e. ( 0 (,] 1 ) -> ( ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) < ( 1 / 6 ) <-> ( ( A ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) < ( ( A ^ 4 ) x. ( 1 / 6 ) ) ) ) | 
						
							| 144 | 136 143 | mpbii |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) < ( ( A ^ 4 ) x. ( 1 / 6 ) ) ) | 
						
							| 145 | 16 | recnd |  |-  ( A e. ( 0 (,] 1 ) -> ( A ^ 4 ) e. CC ) | 
						
							| 146 |  | divrec |  |-  ( ( ( A ^ 4 ) e. CC /\ 6 e. CC /\ 6 =/= 0 ) -> ( ( A ^ 4 ) / 6 ) = ( ( A ^ 4 ) x. ( 1 / 6 ) ) ) | 
						
							| 147 | 105 129 146 | mp3an23 |  |-  ( ( A ^ 4 ) e. CC -> ( ( A ^ 4 ) / 6 ) = ( ( A ^ 4 ) x. ( 1 / 6 ) ) ) | 
						
							| 148 | 145 147 | syl |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) / 6 ) = ( ( A ^ 4 ) x. ( 1 / 6 ) ) ) | 
						
							| 149 | 144 148 | breqtrrd |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) < ( ( A ^ 4 ) / 6 ) ) | 
						
							| 150 | 14 26 29 52 149 | lelttrd |  |-  ( A e. ( 0 (,] 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) < ( ( A ^ 4 ) / 6 ) ) |