Step |
Hyp |
Ref |
Expression |
1 |
|
ef01bnd.1 |
|- F = ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) |
2 |
|
ax-icn |
|- _i e. CC |
3 |
|
0xr |
|- 0 e. RR* |
4 |
|
1re |
|- 1 e. RR |
5 |
|
elioc2 |
|- ( ( 0 e. RR* /\ 1 e. RR ) -> ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) ) |
6 |
3 4 5
|
mp2an |
|- ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) |
7 |
6
|
simp1bi |
|- ( A e. ( 0 (,] 1 ) -> A e. RR ) |
8 |
7
|
recnd |
|- ( A e. ( 0 (,] 1 ) -> A e. CC ) |
9 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
10 |
2 8 9
|
sylancr |
|- ( A e. ( 0 (,] 1 ) -> ( _i x. A ) e. CC ) |
11 |
|
4nn0 |
|- 4 e. NN0 |
12 |
1
|
eftlcl |
|- ( ( ( _i x. A ) e. CC /\ 4 e. NN0 ) -> sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) e. CC ) |
13 |
10 11 12
|
sylancl |
|- ( A e. ( 0 (,] 1 ) -> sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) e. CC ) |
14 |
13
|
abscld |
|- ( A e. ( 0 (,] 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) e. RR ) |
15 |
|
reexpcl |
|- ( ( A e. RR /\ 4 e. NN0 ) -> ( A ^ 4 ) e. RR ) |
16 |
7 11 15
|
sylancl |
|- ( A e. ( 0 (,] 1 ) -> ( A ^ 4 ) e. RR ) |
17 |
|
4re |
|- 4 e. RR |
18 |
17 4
|
readdcli |
|- ( 4 + 1 ) e. RR |
19 |
|
faccl |
|- ( 4 e. NN0 -> ( ! ` 4 ) e. NN ) |
20 |
11 19
|
ax-mp |
|- ( ! ` 4 ) e. NN |
21 |
|
4nn |
|- 4 e. NN |
22 |
20 21
|
nnmulcli |
|- ( ( ! ` 4 ) x. 4 ) e. NN |
23 |
|
nndivre |
|- ( ( ( 4 + 1 ) e. RR /\ ( ( ! ` 4 ) x. 4 ) e. NN ) -> ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) e. RR ) |
24 |
18 22 23
|
mp2an |
|- ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) e. RR |
25 |
|
remulcl |
|- ( ( ( A ^ 4 ) e. RR /\ ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) e. RR ) -> ( ( A ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) e. RR ) |
26 |
16 24 25
|
sylancl |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) e. RR ) |
27 |
|
6nn |
|- 6 e. NN |
28 |
|
nndivre |
|- ( ( ( A ^ 4 ) e. RR /\ 6 e. NN ) -> ( ( A ^ 4 ) / 6 ) e. RR ) |
29 |
16 27 28
|
sylancl |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) / 6 ) e. RR ) |
30 |
|
eqid |
|- ( n e. NN0 |-> ( ( ( abs ` ( _i x. A ) ) ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( ( abs ` ( _i x. A ) ) ^ n ) / ( ! ` n ) ) ) |
31 |
|
eqid |
|- ( n e. NN0 |-> ( ( ( ( abs ` ( _i x. A ) ) ^ 4 ) / ( ! ` 4 ) ) x. ( ( 1 / ( 4 + 1 ) ) ^ n ) ) ) = ( n e. NN0 |-> ( ( ( ( abs ` ( _i x. A ) ) ^ 4 ) / ( ! ` 4 ) ) x. ( ( 1 / ( 4 + 1 ) ) ^ n ) ) ) |
32 |
21
|
a1i |
|- ( A e. ( 0 (,] 1 ) -> 4 e. NN ) |
33 |
|
absmul |
|- ( ( _i e. CC /\ A e. CC ) -> ( abs ` ( _i x. A ) ) = ( ( abs ` _i ) x. ( abs ` A ) ) ) |
34 |
2 8 33
|
sylancr |
|- ( A e. ( 0 (,] 1 ) -> ( abs ` ( _i x. A ) ) = ( ( abs ` _i ) x. ( abs ` A ) ) ) |
35 |
|
absi |
|- ( abs ` _i ) = 1 |
36 |
35
|
oveq1i |
|- ( ( abs ` _i ) x. ( abs ` A ) ) = ( 1 x. ( abs ` A ) ) |
37 |
6
|
simp2bi |
|- ( A e. ( 0 (,] 1 ) -> 0 < A ) |
38 |
7 37
|
elrpd |
|- ( A e. ( 0 (,] 1 ) -> A e. RR+ ) |
39 |
|
rpre |
|- ( A e. RR+ -> A e. RR ) |
40 |
|
rpge0 |
|- ( A e. RR+ -> 0 <_ A ) |
41 |
39 40
|
absidd |
|- ( A e. RR+ -> ( abs ` A ) = A ) |
42 |
38 41
|
syl |
|- ( A e. ( 0 (,] 1 ) -> ( abs ` A ) = A ) |
43 |
42
|
oveq2d |
|- ( A e. ( 0 (,] 1 ) -> ( 1 x. ( abs ` A ) ) = ( 1 x. A ) ) |
44 |
36 43
|
eqtrid |
|- ( A e. ( 0 (,] 1 ) -> ( ( abs ` _i ) x. ( abs ` A ) ) = ( 1 x. A ) ) |
45 |
8
|
mulid2d |
|- ( A e. ( 0 (,] 1 ) -> ( 1 x. A ) = A ) |
46 |
34 44 45
|
3eqtrd |
|- ( A e. ( 0 (,] 1 ) -> ( abs ` ( _i x. A ) ) = A ) |
47 |
6
|
simp3bi |
|- ( A e. ( 0 (,] 1 ) -> A <_ 1 ) |
48 |
46 47
|
eqbrtrd |
|- ( A e. ( 0 (,] 1 ) -> ( abs ` ( _i x. A ) ) <_ 1 ) |
49 |
1 30 31 32 10 48
|
eftlub |
|- ( A e. ( 0 (,] 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) <_ ( ( ( abs ` ( _i x. A ) ) ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) ) |
50 |
46
|
oveq1d |
|- ( A e. ( 0 (,] 1 ) -> ( ( abs ` ( _i x. A ) ) ^ 4 ) = ( A ^ 4 ) ) |
51 |
50
|
oveq1d |
|- ( A e. ( 0 (,] 1 ) -> ( ( ( abs ` ( _i x. A ) ) ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) = ( ( A ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) ) |
52 |
49 51
|
breqtrd |
|- ( A e. ( 0 (,] 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) <_ ( ( A ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) ) |
53 |
|
3pos |
|- 0 < 3 |
54 |
|
0re |
|- 0 e. RR |
55 |
|
3re |
|- 3 e. RR |
56 |
|
5re |
|- 5 e. RR |
57 |
54 55 56
|
ltadd1i |
|- ( 0 < 3 <-> ( 0 + 5 ) < ( 3 + 5 ) ) |
58 |
53 57
|
mpbi |
|- ( 0 + 5 ) < ( 3 + 5 ) |
59 |
|
5cn |
|- 5 e. CC |
60 |
59
|
addid2i |
|- ( 0 + 5 ) = 5 |
61 |
|
cu2 |
|- ( 2 ^ 3 ) = 8 |
62 |
|
5p3e8 |
|- ( 5 + 3 ) = 8 |
63 |
|
3cn |
|- 3 e. CC |
64 |
59 63
|
addcomi |
|- ( 5 + 3 ) = ( 3 + 5 ) |
65 |
61 62 64
|
3eqtr2ri |
|- ( 3 + 5 ) = ( 2 ^ 3 ) |
66 |
58 60 65
|
3brtr3i |
|- 5 < ( 2 ^ 3 ) |
67 |
|
2re |
|- 2 e. RR |
68 |
|
1le2 |
|- 1 <_ 2 |
69 |
|
4z |
|- 4 e. ZZ |
70 |
|
3lt4 |
|- 3 < 4 |
71 |
55 17 70
|
ltleii |
|- 3 <_ 4 |
72 |
|
3z |
|- 3 e. ZZ |
73 |
72
|
eluz1i |
|- ( 4 e. ( ZZ>= ` 3 ) <-> ( 4 e. ZZ /\ 3 <_ 4 ) ) |
74 |
69 71 73
|
mpbir2an |
|- 4 e. ( ZZ>= ` 3 ) |
75 |
|
leexp2a |
|- ( ( 2 e. RR /\ 1 <_ 2 /\ 4 e. ( ZZ>= ` 3 ) ) -> ( 2 ^ 3 ) <_ ( 2 ^ 4 ) ) |
76 |
67 68 74 75
|
mp3an |
|- ( 2 ^ 3 ) <_ ( 2 ^ 4 ) |
77 |
|
8re |
|- 8 e. RR |
78 |
61 77
|
eqeltri |
|- ( 2 ^ 3 ) e. RR |
79 |
|
2nn |
|- 2 e. NN |
80 |
|
nnexpcl |
|- ( ( 2 e. NN /\ 4 e. NN0 ) -> ( 2 ^ 4 ) e. NN ) |
81 |
79 11 80
|
mp2an |
|- ( 2 ^ 4 ) e. NN |
82 |
81
|
nnrei |
|- ( 2 ^ 4 ) e. RR |
83 |
56 78 82
|
ltletri |
|- ( ( 5 < ( 2 ^ 3 ) /\ ( 2 ^ 3 ) <_ ( 2 ^ 4 ) ) -> 5 < ( 2 ^ 4 ) ) |
84 |
66 76 83
|
mp2an |
|- 5 < ( 2 ^ 4 ) |
85 |
|
6re |
|- 6 e. RR |
86 |
85 82
|
remulcli |
|- ( 6 x. ( 2 ^ 4 ) ) e. RR |
87 |
|
6pos |
|- 0 < 6 |
88 |
81
|
nngt0i |
|- 0 < ( 2 ^ 4 ) |
89 |
85 82 87 88
|
mulgt0ii |
|- 0 < ( 6 x. ( 2 ^ 4 ) ) |
90 |
56 82 86 89
|
ltdiv1ii |
|- ( 5 < ( 2 ^ 4 ) <-> ( 5 / ( 6 x. ( 2 ^ 4 ) ) ) < ( ( 2 ^ 4 ) / ( 6 x. ( 2 ^ 4 ) ) ) ) |
91 |
84 90
|
mpbi |
|- ( 5 / ( 6 x. ( 2 ^ 4 ) ) ) < ( ( 2 ^ 4 ) / ( 6 x. ( 2 ^ 4 ) ) ) |
92 |
|
df-5 |
|- 5 = ( 4 + 1 ) |
93 |
|
df-4 |
|- 4 = ( 3 + 1 ) |
94 |
93
|
fveq2i |
|- ( ! ` 4 ) = ( ! ` ( 3 + 1 ) ) |
95 |
|
3nn0 |
|- 3 e. NN0 |
96 |
|
facp1 |
|- ( 3 e. NN0 -> ( ! ` ( 3 + 1 ) ) = ( ( ! ` 3 ) x. ( 3 + 1 ) ) ) |
97 |
95 96
|
ax-mp |
|- ( ! ` ( 3 + 1 ) ) = ( ( ! ` 3 ) x. ( 3 + 1 ) ) |
98 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
99 |
98 93
|
eqtr2i |
|- ( 3 + 1 ) = ( 2 ^ 2 ) |
100 |
99
|
oveq2i |
|- ( ( ! ` 3 ) x. ( 3 + 1 ) ) = ( ( ! ` 3 ) x. ( 2 ^ 2 ) ) |
101 |
94 97 100
|
3eqtri |
|- ( ! ` 4 ) = ( ( ! ` 3 ) x. ( 2 ^ 2 ) ) |
102 |
101
|
oveq1i |
|- ( ( ! ` 4 ) x. ( 2 ^ 2 ) ) = ( ( ( ! ` 3 ) x. ( 2 ^ 2 ) ) x. ( 2 ^ 2 ) ) |
103 |
98
|
oveq2i |
|- ( ( ! ` 4 ) x. ( 2 ^ 2 ) ) = ( ( ! ` 4 ) x. 4 ) |
104 |
|
fac3 |
|- ( ! ` 3 ) = 6 |
105 |
|
6cn |
|- 6 e. CC |
106 |
104 105
|
eqeltri |
|- ( ! ` 3 ) e. CC |
107 |
17
|
recni |
|- 4 e. CC |
108 |
98 107
|
eqeltri |
|- ( 2 ^ 2 ) e. CC |
109 |
106 108 108
|
mulassi |
|- ( ( ( ! ` 3 ) x. ( 2 ^ 2 ) ) x. ( 2 ^ 2 ) ) = ( ( ! ` 3 ) x. ( ( 2 ^ 2 ) x. ( 2 ^ 2 ) ) ) |
110 |
102 103 109
|
3eqtr3i |
|- ( ( ! ` 4 ) x. 4 ) = ( ( ! ` 3 ) x. ( ( 2 ^ 2 ) x. ( 2 ^ 2 ) ) ) |
111 |
|
2p2e4 |
|- ( 2 + 2 ) = 4 |
112 |
111
|
oveq2i |
|- ( 2 ^ ( 2 + 2 ) ) = ( 2 ^ 4 ) |
113 |
|
2cn |
|- 2 e. CC |
114 |
|
2nn0 |
|- 2 e. NN0 |
115 |
|
expadd |
|- ( ( 2 e. CC /\ 2 e. NN0 /\ 2 e. NN0 ) -> ( 2 ^ ( 2 + 2 ) ) = ( ( 2 ^ 2 ) x. ( 2 ^ 2 ) ) ) |
116 |
113 114 114 115
|
mp3an |
|- ( 2 ^ ( 2 + 2 ) ) = ( ( 2 ^ 2 ) x. ( 2 ^ 2 ) ) |
117 |
112 116
|
eqtr3i |
|- ( 2 ^ 4 ) = ( ( 2 ^ 2 ) x. ( 2 ^ 2 ) ) |
118 |
117
|
oveq2i |
|- ( ( ! ` 3 ) x. ( 2 ^ 4 ) ) = ( ( ! ` 3 ) x. ( ( 2 ^ 2 ) x. ( 2 ^ 2 ) ) ) |
119 |
104
|
oveq1i |
|- ( ( ! ` 3 ) x. ( 2 ^ 4 ) ) = ( 6 x. ( 2 ^ 4 ) ) |
120 |
110 118 119
|
3eqtr2ri |
|- ( 6 x. ( 2 ^ 4 ) ) = ( ( ! ` 4 ) x. 4 ) |
121 |
92 120
|
oveq12i |
|- ( 5 / ( 6 x. ( 2 ^ 4 ) ) ) = ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) |
122 |
81
|
nncni |
|- ( 2 ^ 4 ) e. CC |
123 |
122
|
mulid2i |
|- ( 1 x. ( 2 ^ 4 ) ) = ( 2 ^ 4 ) |
124 |
123
|
oveq1i |
|- ( ( 1 x. ( 2 ^ 4 ) ) / ( 6 x. ( 2 ^ 4 ) ) ) = ( ( 2 ^ 4 ) / ( 6 x. ( 2 ^ 4 ) ) ) |
125 |
81
|
nnne0i |
|- ( 2 ^ 4 ) =/= 0 |
126 |
122 125
|
dividi |
|- ( ( 2 ^ 4 ) / ( 2 ^ 4 ) ) = 1 |
127 |
126
|
oveq2i |
|- ( ( 1 / 6 ) x. ( ( 2 ^ 4 ) / ( 2 ^ 4 ) ) ) = ( ( 1 / 6 ) x. 1 ) |
128 |
|
ax-1cn |
|- 1 e. CC |
129 |
85 87
|
gt0ne0ii |
|- 6 =/= 0 |
130 |
128 105 122 122 129 125
|
divmuldivi |
|- ( ( 1 / 6 ) x. ( ( 2 ^ 4 ) / ( 2 ^ 4 ) ) ) = ( ( 1 x. ( 2 ^ 4 ) ) / ( 6 x. ( 2 ^ 4 ) ) ) |
131 |
85 129
|
rereccli |
|- ( 1 / 6 ) e. RR |
132 |
131
|
recni |
|- ( 1 / 6 ) e. CC |
133 |
132
|
mulid1i |
|- ( ( 1 / 6 ) x. 1 ) = ( 1 / 6 ) |
134 |
127 130 133
|
3eqtr3i |
|- ( ( 1 x. ( 2 ^ 4 ) ) / ( 6 x. ( 2 ^ 4 ) ) ) = ( 1 / 6 ) |
135 |
124 134
|
eqtr3i |
|- ( ( 2 ^ 4 ) / ( 6 x. ( 2 ^ 4 ) ) ) = ( 1 / 6 ) |
136 |
91 121 135
|
3brtr3i |
|- ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) < ( 1 / 6 ) |
137 |
|
rpexpcl |
|- ( ( A e. RR+ /\ 4 e. ZZ ) -> ( A ^ 4 ) e. RR+ ) |
138 |
38 69 137
|
sylancl |
|- ( A e. ( 0 (,] 1 ) -> ( A ^ 4 ) e. RR+ ) |
139 |
|
elrp |
|- ( ( A ^ 4 ) e. RR+ <-> ( ( A ^ 4 ) e. RR /\ 0 < ( A ^ 4 ) ) ) |
140 |
|
ltmul2 |
|- ( ( ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) e. RR /\ ( 1 / 6 ) e. RR /\ ( ( A ^ 4 ) e. RR /\ 0 < ( A ^ 4 ) ) ) -> ( ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) < ( 1 / 6 ) <-> ( ( A ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) < ( ( A ^ 4 ) x. ( 1 / 6 ) ) ) ) |
141 |
24 131 140
|
mp3an12 |
|- ( ( ( A ^ 4 ) e. RR /\ 0 < ( A ^ 4 ) ) -> ( ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) < ( 1 / 6 ) <-> ( ( A ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) < ( ( A ^ 4 ) x. ( 1 / 6 ) ) ) ) |
142 |
139 141
|
sylbi |
|- ( ( A ^ 4 ) e. RR+ -> ( ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) < ( 1 / 6 ) <-> ( ( A ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) < ( ( A ^ 4 ) x. ( 1 / 6 ) ) ) ) |
143 |
138 142
|
syl |
|- ( A e. ( 0 (,] 1 ) -> ( ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) < ( 1 / 6 ) <-> ( ( A ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) < ( ( A ^ 4 ) x. ( 1 / 6 ) ) ) ) |
144 |
136 143
|
mpbii |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) < ( ( A ^ 4 ) x. ( 1 / 6 ) ) ) |
145 |
16
|
recnd |
|- ( A e. ( 0 (,] 1 ) -> ( A ^ 4 ) e. CC ) |
146 |
|
divrec |
|- ( ( ( A ^ 4 ) e. CC /\ 6 e. CC /\ 6 =/= 0 ) -> ( ( A ^ 4 ) / 6 ) = ( ( A ^ 4 ) x. ( 1 / 6 ) ) ) |
147 |
105 129 146
|
mp3an23 |
|- ( ( A ^ 4 ) e. CC -> ( ( A ^ 4 ) / 6 ) = ( ( A ^ 4 ) x. ( 1 / 6 ) ) ) |
148 |
145 147
|
syl |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) / 6 ) = ( ( A ^ 4 ) x. ( 1 / 6 ) ) ) |
149 |
144 148
|
breqtrrd |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) x. ( ( 4 + 1 ) / ( ( ! ` 4 ) x. 4 ) ) ) < ( ( A ^ 4 ) / 6 ) ) |
150 |
14 26 29 52 149
|
lelttrd |
|- ( A e. ( 0 (,] 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) < ( ( A ^ 4 ) / 6 ) ) |