Step |
Hyp |
Ref |
Expression |
1 |
|
eftval.1 |
|- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
2 |
|
simpr |
|- ( ( A = 0 /\ k e. ( ZZ>= ` 0 ) ) -> k e. ( ZZ>= ` 0 ) ) |
3 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
4 |
2 3
|
eleqtrrdi |
|- ( ( A = 0 /\ k e. ( ZZ>= ` 0 ) ) -> k e. NN0 ) |
5 |
|
elnn0 |
|- ( k e. NN0 <-> ( k e. NN \/ k = 0 ) ) |
6 |
4 5
|
sylib |
|- ( ( A = 0 /\ k e. ( ZZ>= ` 0 ) ) -> ( k e. NN \/ k = 0 ) ) |
7 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
8 |
7
|
adantl |
|- ( ( A = 0 /\ k e. NN ) -> k e. NN0 ) |
9 |
1
|
eftval |
|- ( k e. NN0 -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
10 |
8 9
|
syl |
|- ( ( A = 0 /\ k e. NN ) -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
11 |
|
oveq1 |
|- ( A = 0 -> ( A ^ k ) = ( 0 ^ k ) ) |
12 |
|
0exp |
|- ( k e. NN -> ( 0 ^ k ) = 0 ) |
13 |
11 12
|
sylan9eq |
|- ( ( A = 0 /\ k e. NN ) -> ( A ^ k ) = 0 ) |
14 |
13
|
oveq1d |
|- ( ( A = 0 /\ k e. NN ) -> ( ( A ^ k ) / ( ! ` k ) ) = ( 0 / ( ! ` k ) ) ) |
15 |
|
faccl |
|- ( k e. NN0 -> ( ! ` k ) e. NN ) |
16 |
|
nncn |
|- ( ( ! ` k ) e. NN -> ( ! ` k ) e. CC ) |
17 |
|
nnne0 |
|- ( ( ! ` k ) e. NN -> ( ! ` k ) =/= 0 ) |
18 |
16 17
|
div0d |
|- ( ( ! ` k ) e. NN -> ( 0 / ( ! ` k ) ) = 0 ) |
19 |
8 15 18
|
3syl |
|- ( ( A = 0 /\ k e. NN ) -> ( 0 / ( ! ` k ) ) = 0 ) |
20 |
10 14 19
|
3eqtrd |
|- ( ( A = 0 /\ k e. NN ) -> ( F ` k ) = 0 ) |
21 |
|
nnne0 |
|- ( k e. NN -> k =/= 0 ) |
22 |
|
velsn |
|- ( k e. { 0 } <-> k = 0 ) |
23 |
22
|
necon3bbii |
|- ( -. k e. { 0 } <-> k =/= 0 ) |
24 |
21 23
|
sylibr |
|- ( k e. NN -> -. k e. { 0 } ) |
25 |
24
|
adantl |
|- ( ( A = 0 /\ k e. NN ) -> -. k e. { 0 } ) |
26 |
25
|
iffalsed |
|- ( ( A = 0 /\ k e. NN ) -> if ( k e. { 0 } , 1 , 0 ) = 0 ) |
27 |
20 26
|
eqtr4d |
|- ( ( A = 0 /\ k e. NN ) -> ( F ` k ) = if ( k e. { 0 } , 1 , 0 ) ) |
28 |
|
fveq2 |
|- ( k = 0 -> ( F ` k ) = ( F ` 0 ) ) |
29 |
|
oveq1 |
|- ( A = 0 -> ( A ^ 0 ) = ( 0 ^ 0 ) ) |
30 |
|
0exp0e1 |
|- ( 0 ^ 0 ) = 1 |
31 |
29 30
|
eqtrdi |
|- ( A = 0 -> ( A ^ 0 ) = 1 ) |
32 |
31
|
oveq1d |
|- ( A = 0 -> ( ( A ^ 0 ) / ( ! ` 0 ) ) = ( 1 / ( ! ` 0 ) ) ) |
33 |
|
0nn0 |
|- 0 e. NN0 |
34 |
1
|
eftval |
|- ( 0 e. NN0 -> ( F ` 0 ) = ( ( A ^ 0 ) / ( ! ` 0 ) ) ) |
35 |
33 34
|
ax-mp |
|- ( F ` 0 ) = ( ( A ^ 0 ) / ( ! ` 0 ) ) |
36 |
|
fac0 |
|- ( ! ` 0 ) = 1 |
37 |
36
|
oveq2i |
|- ( 1 / ( ! ` 0 ) ) = ( 1 / 1 ) |
38 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
39 |
37 38
|
eqtr2i |
|- 1 = ( 1 / ( ! ` 0 ) ) |
40 |
32 35 39
|
3eqtr4g |
|- ( A = 0 -> ( F ` 0 ) = 1 ) |
41 |
28 40
|
sylan9eqr |
|- ( ( A = 0 /\ k = 0 ) -> ( F ` k ) = 1 ) |
42 |
|
simpr |
|- ( ( A = 0 /\ k = 0 ) -> k = 0 ) |
43 |
42 22
|
sylibr |
|- ( ( A = 0 /\ k = 0 ) -> k e. { 0 } ) |
44 |
43
|
iftrued |
|- ( ( A = 0 /\ k = 0 ) -> if ( k e. { 0 } , 1 , 0 ) = 1 ) |
45 |
41 44
|
eqtr4d |
|- ( ( A = 0 /\ k = 0 ) -> ( F ` k ) = if ( k e. { 0 } , 1 , 0 ) ) |
46 |
27 45
|
jaodan |
|- ( ( A = 0 /\ ( k e. NN \/ k = 0 ) ) -> ( F ` k ) = if ( k e. { 0 } , 1 , 0 ) ) |
47 |
6 46
|
syldan |
|- ( ( A = 0 /\ k e. ( ZZ>= ` 0 ) ) -> ( F ` k ) = if ( k e. { 0 } , 1 , 0 ) ) |
48 |
33 3
|
eleqtri |
|- 0 e. ( ZZ>= ` 0 ) |
49 |
48
|
a1i |
|- ( A = 0 -> 0 e. ( ZZ>= ` 0 ) ) |
50 |
|
1cnd |
|- ( ( A = 0 /\ k e. { 0 } ) -> 1 e. CC ) |
51 |
|
fz0sn |
|- ( 0 ... 0 ) = { 0 } |
52 |
51
|
eqimss2i |
|- { 0 } C_ ( 0 ... 0 ) |
53 |
52
|
a1i |
|- ( A = 0 -> { 0 } C_ ( 0 ... 0 ) ) |
54 |
47 49 50 53
|
fsumcvg2 |
|- ( A = 0 -> seq 0 ( + , F ) ~~> ( seq 0 ( + , F ) ` 0 ) ) |
55 |
|
0z |
|- 0 e. ZZ |
56 |
55 40
|
seq1i |
|- ( A = 0 -> ( seq 0 ( + , F ) ` 0 ) = 1 ) |
57 |
54 56
|
breqtrd |
|- ( A = 0 -> seq 0 ( + , F ) ~~> 1 ) |