| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2cn |  |-  2 e. CC | 
						
							| 2 |  | picn |  |-  _pi e. CC | 
						
							| 3 | 1 2 | mulcli |  |-  ( 2 x. _pi ) e. CC | 
						
							| 4 |  | efival |  |-  ( ( 2 x. _pi ) e. CC -> ( exp ` ( _i x. ( 2 x. _pi ) ) ) = ( ( cos ` ( 2 x. _pi ) ) + ( _i x. ( sin ` ( 2 x. _pi ) ) ) ) ) | 
						
							| 5 | 3 4 | ax-mp |  |-  ( exp ` ( _i x. ( 2 x. _pi ) ) ) = ( ( cos ` ( 2 x. _pi ) ) + ( _i x. ( sin ` ( 2 x. _pi ) ) ) ) | 
						
							| 6 |  | cos2pi |  |-  ( cos ` ( 2 x. _pi ) ) = 1 | 
						
							| 7 |  | sin2pi |  |-  ( sin ` ( 2 x. _pi ) ) = 0 | 
						
							| 8 | 7 | oveq2i |  |-  ( _i x. ( sin ` ( 2 x. _pi ) ) ) = ( _i x. 0 ) | 
						
							| 9 |  | it0e0 |  |-  ( _i x. 0 ) = 0 | 
						
							| 10 | 8 9 | eqtri |  |-  ( _i x. ( sin ` ( 2 x. _pi ) ) ) = 0 | 
						
							| 11 | 6 10 | oveq12i |  |-  ( ( cos ` ( 2 x. _pi ) ) + ( _i x. ( sin ` ( 2 x. _pi ) ) ) ) = ( 1 + 0 ) | 
						
							| 12 |  | 1p0e1 |  |-  ( 1 + 0 ) = 1 | 
						
							| 13 | 11 12 | eqtri |  |-  ( ( cos ` ( 2 x. _pi ) ) + ( _i x. ( sin ` ( 2 x. _pi ) ) ) ) = 1 | 
						
							| 14 | 5 13 | eqtri |  |-  ( exp ` ( _i x. ( 2 x. _pi ) ) ) = 1 |