Step |
Hyp |
Ref |
Expression |
1 |
|
2cn |
|- 2 e. CC |
2 |
|
picn |
|- _pi e. CC |
3 |
1 2
|
mulcli |
|- ( 2 x. _pi ) e. CC |
4 |
|
efival |
|- ( ( 2 x. _pi ) e. CC -> ( exp ` ( _i x. ( 2 x. _pi ) ) ) = ( ( cos ` ( 2 x. _pi ) ) + ( _i x. ( sin ` ( 2 x. _pi ) ) ) ) ) |
5 |
3 4
|
ax-mp |
|- ( exp ` ( _i x. ( 2 x. _pi ) ) ) = ( ( cos ` ( 2 x. _pi ) ) + ( _i x. ( sin ` ( 2 x. _pi ) ) ) ) |
6 |
|
cos2pi |
|- ( cos ` ( 2 x. _pi ) ) = 1 |
7 |
|
sin2pi |
|- ( sin ` ( 2 x. _pi ) ) = 0 |
8 |
7
|
oveq2i |
|- ( _i x. ( sin ` ( 2 x. _pi ) ) ) = ( _i x. 0 ) |
9 |
|
it0e0 |
|- ( _i x. 0 ) = 0 |
10 |
8 9
|
eqtri |
|- ( _i x. ( sin ` ( 2 x. _pi ) ) ) = 0 |
11 |
6 10
|
oveq12i |
|- ( ( cos ` ( 2 x. _pi ) ) + ( _i x. ( sin ` ( 2 x. _pi ) ) ) ) = ( 1 + 0 ) |
12 |
|
1p0e1 |
|- ( 1 + 0 ) = 1 |
13 |
11 12
|
eqtri |
|- ( ( cos ` ( 2 x. _pi ) ) + ( _i x. ( sin ` ( 2 x. _pi ) ) ) ) = 1 |
14 |
5 13
|
eqtri |
|- ( exp ` ( _i x. ( 2 x. _pi ) ) ) = 1 |