Step |
Hyp |
Ref |
Expression |
1 |
|
ef4p.1 |
|- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
2 |
|
df-4 |
|- 4 = ( 3 + 1 ) |
3 |
|
3nn0 |
|- 3 e. NN0 |
4 |
|
id |
|- ( A e. CC -> A e. CC ) |
5 |
|
ax-1cn |
|- 1 e. CC |
6 |
|
addcl |
|- ( ( 1 e. CC /\ A e. CC ) -> ( 1 + A ) e. CC ) |
7 |
5 6
|
mpan |
|- ( A e. CC -> ( 1 + A ) e. CC ) |
8 |
|
sqcl |
|- ( A e. CC -> ( A ^ 2 ) e. CC ) |
9 |
8
|
halfcld |
|- ( A e. CC -> ( ( A ^ 2 ) / 2 ) e. CC ) |
10 |
7 9
|
addcld |
|- ( A e. CC -> ( ( 1 + A ) + ( ( A ^ 2 ) / 2 ) ) e. CC ) |
11 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
12 |
|
2nn0 |
|- 2 e. NN0 |
13 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
14 |
|
1nn0 |
|- 1 e. NN0 |
15 |
5
|
a1i |
|- ( A e. CC -> 1 e. CC ) |
16 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
17 |
|
0nn0 |
|- 0 e. NN0 |
18 |
|
0cnd |
|- ( A e. CC -> 0 e. CC ) |
19 |
1
|
efval2 |
|- ( A e. CC -> ( exp ` A ) = sum_ k e. NN0 ( F ` k ) ) |
20 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
21 |
20
|
sumeq1i |
|- sum_ k e. NN0 ( F ` k ) = sum_ k e. ( ZZ>= ` 0 ) ( F ` k ) |
22 |
19 21
|
eqtr2di |
|- ( A e. CC -> sum_ k e. ( ZZ>= ` 0 ) ( F ` k ) = ( exp ` A ) ) |
23 |
22
|
oveq2d |
|- ( A e. CC -> ( 0 + sum_ k e. ( ZZ>= ` 0 ) ( F ` k ) ) = ( 0 + ( exp ` A ) ) ) |
24 |
|
efcl |
|- ( A e. CC -> ( exp ` A ) e. CC ) |
25 |
24
|
addid2d |
|- ( A e. CC -> ( 0 + ( exp ` A ) ) = ( exp ` A ) ) |
26 |
23 25
|
eqtr2d |
|- ( A e. CC -> ( exp ` A ) = ( 0 + sum_ k e. ( ZZ>= ` 0 ) ( F ` k ) ) ) |
27 |
|
eft0val |
|- ( A e. CC -> ( ( A ^ 0 ) / ( ! ` 0 ) ) = 1 ) |
28 |
27
|
oveq2d |
|- ( A e. CC -> ( 0 + ( ( A ^ 0 ) / ( ! ` 0 ) ) ) = ( 0 + 1 ) ) |
29 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
30 |
28 29
|
eqtrdi |
|- ( A e. CC -> ( 0 + ( ( A ^ 0 ) / ( ! ` 0 ) ) ) = 1 ) |
31 |
1 16 17 4 18 26 30
|
efsep |
|- ( A e. CC -> ( exp ` A ) = ( 1 + sum_ k e. ( ZZ>= ` 1 ) ( F ` k ) ) ) |
32 |
|
exp1 |
|- ( A e. CC -> ( A ^ 1 ) = A ) |
33 |
|
fac1 |
|- ( ! ` 1 ) = 1 |
34 |
33
|
a1i |
|- ( A e. CC -> ( ! ` 1 ) = 1 ) |
35 |
32 34
|
oveq12d |
|- ( A e. CC -> ( ( A ^ 1 ) / ( ! ` 1 ) ) = ( A / 1 ) ) |
36 |
|
div1 |
|- ( A e. CC -> ( A / 1 ) = A ) |
37 |
35 36
|
eqtrd |
|- ( A e. CC -> ( ( A ^ 1 ) / ( ! ` 1 ) ) = A ) |
38 |
37
|
oveq2d |
|- ( A e. CC -> ( 1 + ( ( A ^ 1 ) / ( ! ` 1 ) ) ) = ( 1 + A ) ) |
39 |
1 13 14 4 15 31 38
|
efsep |
|- ( A e. CC -> ( exp ` A ) = ( ( 1 + A ) + sum_ k e. ( ZZ>= ` 2 ) ( F ` k ) ) ) |
40 |
|
fac2 |
|- ( ! ` 2 ) = 2 |
41 |
40
|
oveq2i |
|- ( ( A ^ 2 ) / ( ! ` 2 ) ) = ( ( A ^ 2 ) / 2 ) |
42 |
41
|
oveq2i |
|- ( ( 1 + A ) + ( ( A ^ 2 ) / ( ! ` 2 ) ) ) = ( ( 1 + A ) + ( ( A ^ 2 ) / 2 ) ) |
43 |
42
|
a1i |
|- ( A e. CC -> ( ( 1 + A ) + ( ( A ^ 2 ) / ( ! ` 2 ) ) ) = ( ( 1 + A ) + ( ( A ^ 2 ) / 2 ) ) ) |
44 |
1 11 12 4 7 39 43
|
efsep |
|- ( A e. CC -> ( exp ` A ) = ( ( ( 1 + A ) + ( ( A ^ 2 ) / 2 ) ) + sum_ k e. ( ZZ>= ` 3 ) ( F ` k ) ) ) |
45 |
|
fac3 |
|- ( ! ` 3 ) = 6 |
46 |
45
|
oveq2i |
|- ( ( A ^ 3 ) / ( ! ` 3 ) ) = ( ( A ^ 3 ) / 6 ) |
47 |
46
|
oveq2i |
|- ( ( ( 1 + A ) + ( ( A ^ 2 ) / 2 ) ) + ( ( A ^ 3 ) / ( ! ` 3 ) ) ) = ( ( ( 1 + A ) + ( ( A ^ 2 ) / 2 ) ) + ( ( A ^ 3 ) / 6 ) ) |
48 |
47
|
a1i |
|- ( A e. CC -> ( ( ( 1 + A ) + ( ( A ^ 2 ) / 2 ) ) + ( ( A ^ 3 ) / ( ! ` 3 ) ) ) = ( ( ( 1 + A ) + ( ( A ^ 2 ) / 2 ) ) + ( ( A ^ 3 ) / 6 ) ) ) |
49 |
1 2 3 4 10 44 48
|
efsep |
|- ( A e. CC -> ( exp ` A ) = ( ( ( ( 1 + A ) + ( ( A ^ 2 ) / 2 ) ) + ( ( A ^ 3 ) / 6 ) ) + sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) |