| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efabl.1 |
|- F = ( x e. X |-> ( exp ` ( A x. x ) ) ) |
| 2 |
|
efabl.2 |
|- G = ( ( mulGrp ` CCfld ) |`s ran F ) |
| 3 |
|
efabl.3 |
|- ( ph -> A e. CC ) |
| 4 |
|
efabl.4 |
|- ( ph -> X e. ( SubGrp ` CCfld ) ) |
| 5 |
|
eqid |
|- ( Base ` ( CCfld |`s X ) ) = ( Base ` ( CCfld |`s X ) ) |
| 6 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 7 |
|
eqid |
|- ( +g ` ( CCfld |`s X ) ) = ( +g ` ( CCfld |`s X ) ) |
| 8 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 9 |
|
simp1 |
|- ( ( ph /\ x e. ( Base ` ( CCfld |`s X ) ) /\ y e. ( Base ` ( CCfld |`s X ) ) ) -> ph ) |
| 10 |
|
simp2 |
|- ( ( ph /\ x e. ( Base ` ( CCfld |`s X ) ) /\ y e. ( Base ` ( CCfld |`s X ) ) ) -> x e. ( Base ` ( CCfld |`s X ) ) ) |
| 11 |
|
eqid |
|- ( CCfld |`s X ) = ( CCfld |`s X ) |
| 12 |
11
|
subgbas |
|- ( X e. ( SubGrp ` CCfld ) -> X = ( Base ` ( CCfld |`s X ) ) ) |
| 13 |
4 12
|
syl |
|- ( ph -> X = ( Base ` ( CCfld |`s X ) ) ) |
| 14 |
13
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` ( CCfld |`s X ) ) /\ y e. ( Base ` ( CCfld |`s X ) ) ) -> X = ( Base ` ( CCfld |`s X ) ) ) |
| 15 |
10 14
|
eleqtrrd |
|- ( ( ph /\ x e. ( Base ` ( CCfld |`s X ) ) /\ y e. ( Base ` ( CCfld |`s X ) ) ) -> x e. X ) |
| 16 |
|
simp3 |
|- ( ( ph /\ x e. ( Base ` ( CCfld |`s X ) ) /\ y e. ( Base ` ( CCfld |`s X ) ) ) -> y e. ( Base ` ( CCfld |`s X ) ) ) |
| 17 |
16 14
|
eleqtrrd |
|- ( ( ph /\ x e. ( Base ` ( CCfld |`s X ) ) /\ y e. ( Base ` ( CCfld |`s X ) ) ) -> y e. X ) |
| 18 |
3 4
|
jca |
|- ( ph -> ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) ) |
| 19 |
1
|
efgh |
|- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ x e. X /\ y e. X ) -> ( F ` ( x + y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
| 20 |
18 19
|
syl3an1 |
|- ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x + y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
| 21 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
| 22 |
11 21
|
ressplusg |
|- ( X e. ( SubGrp ` CCfld ) -> + = ( +g ` ( CCfld |`s X ) ) ) |
| 23 |
4 22
|
syl |
|- ( ph -> + = ( +g ` ( CCfld |`s X ) ) ) |
| 24 |
23
|
3ad2ant1 |
|- ( ( ph /\ x e. X /\ y e. X ) -> + = ( +g ` ( CCfld |`s X ) ) ) |
| 25 |
24
|
oveqd |
|- ( ( ph /\ x e. X /\ y e. X ) -> ( x + y ) = ( x ( +g ` ( CCfld |`s X ) ) y ) ) |
| 26 |
25
|
fveq2d |
|- ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x + y ) ) = ( F ` ( x ( +g ` ( CCfld |`s X ) ) y ) ) ) |
| 27 |
|
mptexg |
|- ( X e. ( SubGrp ` CCfld ) -> ( x e. X |-> ( exp ` ( A x. x ) ) ) e. _V ) |
| 28 |
1 27
|
eqeltrid |
|- ( X e. ( SubGrp ` CCfld ) -> F e. _V ) |
| 29 |
|
rnexg |
|- ( F e. _V -> ran F e. _V ) |
| 30 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
| 31 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
| 32 |
30 31
|
mgpplusg |
|- x. = ( +g ` ( mulGrp ` CCfld ) ) |
| 33 |
2 32
|
ressplusg |
|- ( ran F e. _V -> x. = ( +g ` G ) ) |
| 34 |
4 28 29 33
|
4syl |
|- ( ph -> x. = ( +g ` G ) ) |
| 35 |
34
|
3ad2ant1 |
|- ( ( ph /\ x e. X /\ y e. X ) -> x. = ( +g ` G ) ) |
| 36 |
35
|
oveqd |
|- ( ( ph /\ x e. X /\ y e. X ) -> ( ( F ` x ) x. ( F ` y ) ) = ( ( F ` x ) ( +g ` G ) ( F ` y ) ) ) |
| 37 |
20 26 36
|
3eqtr3d |
|- ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x ( +g ` ( CCfld |`s X ) ) y ) ) = ( ( F ` x ) ( +g ` G ) ( F ` y ) ) ) |
| 38 |
9 15 17 37
|
syl3anc |
|- ( ( ph /\ x e. ( Base ` ( CCfld |`s X ) ) /\ y e. ( Base ` ( CCfld |`s X ) ) ) -> ( F ` ( x ( +g ` ( CCfld |`s X ) ) y ) ) = ( ( F ` x ) ( +g ` G ) ( F ` y ) ) ) |
| 39 |
|
fvex |
|- ( exp ` ( A x. x ) ) e. _V |
| 40 |
39 1
|
fnmpti |
|- F Fn X |
| 41 |
|
dffn4 |
|- ( F Fn X <-> F : X -onto-> ran F ) |
| 42 |
40 41
|
mpbi |
|- F : X -onto-> ran F |
| 43 |
|
eqidd |
|- ( ph -> F = F ) |
| 44 |
|
eff |
|- exp : CC --> CC |
| 45 |
44
|
a1i |
|- ( ( ph /\ x e. X ) -> exp : CC --> CC ) |
| 46 |
3
|
adantr |
|- ( ( ph /\ x e. X ) -> A e. CC ) |
| 47 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 48 |
47
|
subgss |
|- ( X e. ( SubGrp ` CCfld ) -> X C_ CC ) |
| 49 |
4 48
|
syl |
|- ( ph -> X C_ CC ) |
| 50 |
49
|
sselda |
|- ( ( ph /\ x e. X ) -> x e. CC ) |
| 51 |
46 50
|
mulcld |
|- ( ( ph /\ x e. X ) -> ( A x. x ) e. CC ) |
| 52 |
45 51
|
ffvelcdmd |
|- ( ( ph /\ x e. X ) -> ( exp ` ( A x. x ) ) e. CC ) |
| 53 |
52
|
ralrimiva |
|- ( ph -> A. x e. X ( exp ` ( A x. x ) ) e. CC ) |
| 54 |
1
|
rnmptss |
|- ( A. x e. X ( exp ` ( A x. x ) ) e. CC -> ran F C_ CC ) |
| 55 |
30 47
|
mgpbas |
|- CC = ( Base ` ( mulGrp ` CCfld ) ) |
| 56 |
2 55
|
ressbas2 |
|- ( ran F C_ CC -> ran F = ( Base ` G ) ) |
| 57 |
53 54 56
|
3syl |
|- ( ph -> ran F = ( Base ` G ) ) |
| 58 |
43 13 57
|
foeq123d |
|- ( ph -> ( F : X -onto-> ran F <-> F : ( Base ` ( CCfld |`s X ) ) -onto-> ( Base ` G ) ) ) |
| 59 |
42 58
|
mpbii |
|- ( ph -> F : ( Base ` ( CCfld |`s X ) ) -onto-> ( Base ` G ) ) |
| 60 |
|
cnring |
|- CCfld e. Ring |
| 61 |
|
ringabl |
|- ( CCfld e. Ring -> CCfld e. Abel ) |
| 62 |
60 61
|
ax-mp |
|- CCfld e. Abel |
| 63 |
11
|
subgabl |
|- ( ( CCfld e. Abel /\ X e. ( SubGrp ` CCfld ) ) -> ( CCfld |`s X ) e. Abel ) |
| 64 |
62 4 63
|
sylancr |
|- ( ph -> ( CCfld |`s X ) e. Abel ) |
| 65 |
5 6 7 8 38 59 64
|
ghmabl |
|- ( ph -> G e. Abel ) |