Step |
Hyp |
Ref |
Expression |
1 |
|
efabl.1 |
|- F = ( x e. X |-> ( exp ` ( A x. x ) ) ) |
2 |
|
efabl.2 |
|- G = ( ( mulGrp ` CCfld ) |`s ran F ) |
3 |
|
efabl.3 |
|- ( ph -> A e. CC ) |
4 |
|
efabl.4 |
|- ( ph -> X e. ( SubGrp ` CCfld ) ) |
5 |
|
eqid |
|- ( Base ` ( CCfld |`s X ) ) = ( Base ` ( CCfld |`s X ) ) |
6 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
7 |
|
eqid |
|- ( +g ` ( CCfld |`s X ) ) = ( +g ` ( CCfld |`s X ) ) |
8 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
9 |
|
simp1 |
|- ( ( ph /\ x e. ( Base ` ( CCfld |`s X ) ) /\ y e. ( Base ` ( CCfld |`s X ) ) ) -> ph ) |
10 |
|
simp2 |
|- ( ( ph /\ x e. ( Base ` ( CCfld |`s X ) ) /\ y e. ( Base ` ( CCfld |`s X ) ) ) -> x e. ( Base ` ( CCfld |`s X ) ) ) |
11 |
|
eqid |
|- ( CCfld |`s X ) = ( CCfld |`s X ) |
12 |
11
|
subgbas |
|- ( X e. ( SubGrp ` CCfld ) -> X = ( Base ` ( CCfld |`s X ) ) ) |
13 |
4 12
|
syl |
|- ( ph -> X = ( Base ` ( CCfld |`s X ) ) ) |
14 |
13
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` ( CCfld |`s X ) ) /\ y e. ( Base ` ( CCfld |`s X ) ) ) -> X = ( Base ` ( CCfld |`s X ) ) ) |
15 |
10 14
|
eleqtrrd |
|- ( ( ph /\ x e. ( Base ` ( CCfld |`s X ) ) /\ y e. ( Base ` ( CCfld |`s X ) ) ) -> x e. X ) |
16 |
|
simp3 |
|- ( ( ph /\ x e. ( Base ` ( CCfld |`s X ) ) /\ y e. ( Base ` ( CCfld |`s X ) ) ) -> y e. ( Base ` ( CCfld |`s X ) ) ) |
17 |
16 14
|
eleqtrrd |
|- ( ( ph /\ x e. ( Base ` ( CCfld |`s X ) ) /\ y e. ( Base ` ( CCfld |`s X ) ) ) -> y e. X ) |
18 |
3 4
|
jca |
|- ( ph -> ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) ) |
19 |
1
|
efgh |
|- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ x e. X /\ y e. X ) -> ( F ` ( x + y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
20 |
18 19
|
syl3an1 |
|- ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x + y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
21 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
22 |
11 21
|
ressplusg |
|- ( X e. ( SubGrp ` CCfld ) -> + = ( +g ` ( CCfld |`s X ) ) ) |
23 |
4 22
|
syl |
|- ( ph -> + = ( +g ` ( CCfld |`s X ) ) ) |
24 |
23
|
3ad2ant1 |
|- ( ( ph /\ x e. X /\ y e. X ) -> + = ( +g ` ( CCfld |`s X ) ) ) |
25 |
24
|
oveqd |
|- ( ( ph /\ x e. X /\ y e. X ) -> ( x + y ) = ( x ( +g ` ( CCfld |`s X ) ) y ) ) |
26 |
25
|
fveq2d |
|- ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x + y ) ) = ( F ` ( x ( +g ` ( CCfld |`s X ) ) y ) ) ) |
27 |
|
mptexg |
|- ( X e. ( SubGrp ` CCfld ) -> ( x e. X |-> ( exp ` ( A x. x ) ) ) e. _V ) |
28 |
1 27
|
eqeltrid |
|- ( X e. ( SubGrp ` CCfld ) -> F e. _V ) |
29 |
|
rnexg |
|- ( F e. _V -> ran F e. _V ) |
30 |
4 28 29
|
3syl |
|- ( ph -> ran F e. _V ) |
31 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
32 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
33 |
31 32
|
mgpplusg |
|- x. = ( +g ` ( mulGrp ` CCfld ) ) |
34 |
2 33
|
ressplusg |
|- ( ran F e. _V -> x. = ( +g ` G ) ) |
35 |
30 34
|
syl |
|- ( ph -> x. = ( +g ` G ) ) |
36 |
35
|
3ad2ant1 |
|- ( ( ph /\ x e. X /\ y e. X ) -> x. = ( +g ` G ) ) |
37 |
36
|
oveqd |
|- ( ( ph /\ x e. X /\ y e. X ) -> ( ( F ` x ) x. ( F ` y ) ) = ( ( F ` x ) ( +g ` G ) ( F ` y ) ) ) |
38 |
20 26 37
|
3eqtr3d |
|- ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x ( +g ` ( CCfld |`s X ) ) y ) ) = ( ( F ` x ) ( +g ` G ) ( F ` y ) ) ) |
39 |
9 15 17 38
|
syl3anc |
|- ( ( ph /\ x e. ( Base ` ( CCfld |`s X ) ) /\ y e. ( Base ` ( CCfld |`s X ) ) ) -> ( F ` ( x ( +g ` ( CCfld |`s X ) ) y ) ) = ( ( F ` x ) ( +g ` G ) ( F ` y ) ) ) |
40 |
|
fvex |
|- ( exp ` ( A x. x ) ) e. _V |
41 |
40 1
|
fnmpti |
|- F Fn X |
42 |
|
dffn4 |
|- ( F Fn X <-> F : X -onto-> ran F ) |
43 |
41 42
|
mpbi |
|- F : X -onto-> ran F |
44 |
|
eqidd |
|- ( ph -> F = F ) |
45 |
|
eff |
|- exp : CC --> CC |
46 |
45
|
a1i |
|- ( ( ph /\ x e. X ) -> exp : CC --> CC ) |
47 |
3
|
adantr |
|- ( ( ph /\ x e. X ) -> A e. CC ) |
48 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
49 |
48
|
subgss |
|- ( X e. ( SubGrp ` CCfld ) -> X C_ CC ) |
50 |
4 49
|
syl |
|- ( ph -> X C_ CC ) |
51 |
50
|
sselda |
|- ( ( ph /\ x e. X ) -> x e. CC ) |
52 |
47 51
|
mulcld |
|- ( ( ph /\ x e. X ) -> ( A x. x ) e. CC ) |
53 |
46 52
|
ffvelrnd |
|- ( ( ph /\ x e. X ) -> ( exp ` ( A x. x ) ) e. CC ) |
54 |
53
|
ralrimiva |
|- ( ph -> A. x e. X ( exp ` ( A x. x ) ) e. CC ) |
55 |
1
|
rnmptss |
|- ( A. x e. X ( exp ` ( A x. x ) ) e. CC -> ran F C_ CC ) |
56 |
31 48
|
mgpbas |
|- CC = ( Base ` ( mulGrp ` CCfld ) ) |
57 |
2 56
|
ressbas2 |
|- ( ran F C_ CC -> ran F = ( Base ` G ) ) |
58 |
54 55 57
|
3syl |
|- ( ph -> ran F = ( Base ` G ) ) |
59 |
44 13 58
|
foeq123d |
|- ( ph -> ( F : X -onto-> ran F <-> F : ( Base ` ( CCfld |`s X ) ) -onto-> ( Base ` G ) ) ) |
60 |
43 59
|
mpbii |
|- ( ph -> F : ( Base ` ( CCfld |`s X ) ) -onto-> ( Base ` G ) ) |
61 |
|
cnring |
|- CCfld e. Ring |
62 |
|
ringabl |
|- ( CCfld e. Ring -> CCfld e. Abel ) |
63 |
61 62
|
ax-mp |
|- CCfld e. Abel |
64 |
11
|
subgabl |
|- ( ( CCfld e. Abel /\ X e. ( SubGrp ` CCfld ) ) -> ( CCfld |`s X ) e. Abel ) |
65 |
63 4 64
|
sylancr |
|- ( ph -> ( CCfld |`s X ) e. Abel ) |
66 |
5 6 7 8 39 60 65
|
ghmabl |
|- ( ph -> G e. Abel ) |