| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
| 2 |
|
eqid |
|- ( n e. NN0 |-> ( ( B ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( B ^ n ) / ( ! ` n ) ) ) |
| 3 |
|
eqid |
|- ( n e. NN0 |-> ( ( ( A + B ) ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( ( A + B ) ^ n ) / ( ! ` n ) ) ) |
| 4 |
|
simpl |
|- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
| 5 |
|
simpr |
|- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
| 6 |
1 2 3 4 5
|
efaddlem |
|- ( ( A e. CC /\ B e. CC ) -> ( exp ` ( A + B ) ) = ( ( exp ` A ) x. ( exp ` B ) ) ) |