Step |
Hyp |
Ref |
Expression |
1 |
|
efadd.1 |
|- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
2 |
|
efadd.2 |
|- G = ( n e. NN0 |-> ( ( B ^ n ) / ( ! ` n ) ) ) |
3 |
|
efadd.3 |
|- H = ( n e. NN0 |-> ( ( ( A + B ) ^ n ) / ( ! ` n ) ) ) |
4 |
|
efadd.4 |
|- ( ph -> A e. CC ) |
5 |
|
efadd.5 |
|- ( ph -> B e. CC ) |
6 |
4 5
|
addcld |
|- ( ph -> ( A + B ) e. CC ) |
7 |
3
|
efcvg |
|- ( ( A + B ) e. CC -> seq 0 ( + , H ) ~~> ( exp ` ( A + B ) ) ) |
8 |
6 7
|
syl |
|- ( ph -> seq 0 ( + , H ) ~~> ( exp ` ( A + B ) ) ) |
9 |
1
|
eftval |
|- ( j e. NN0 -> ( F ` j ) = ( ( A ^ j ) / ( ! ` j ) ) ) |
10 |
9
|
adantl |
|- ( ( ph /\ j e. NN0 ) -> ( F ` j ) = ( ( A ^ j ) / ( ! ` j ) ) ) |
11 |
|
absexp |
|- ( ( A e. CC /\ j e. NN0 ) -> ( abs ` ( A ^ j ) ) = ( ( abs ` A ) ^ j ) ) |
12 |
4 11
|
sylan |
|- ( ( ph /\ j e. NN0 ) -> ( abs ` ( A ^ j ) ) = ( ( abs ` A ) ^ j ) ) |
13 |
|
faccl |
|- ( j e. NN0 -> ( ! ` j ) e. NN ) |
14 |
13
|
adantl |
|- ( ( ph /\ j e. NN0 ) -> ( ! ` j ) e. NN ) |
15 |
|
nnre |
|- ( ( ! ` j ) e. NN -> ( ! ` j ) e. RR ) |
16 |
|
nnnn0 |
|- ( ( ! ` j ) e. NN -> ( ! ` j ) e. NN0 ) |
17 |
16
|
nn0ge0d |
|- ( ( ! ` j ) e. NN -> 0 <_ ( ! ` j ) ) |
18 |
15 17
|
absidd |
|- ( ( ! ` j ) e. NN -> ( abs ` ( ! ` j ) ) = ( ! ` j ) ) |
19 |
14 18
|
syl |
|- ( ( ph /\ j e. NN0 ) -> ( abs ` ( ! ` j ) ) = ( ! ` j ) ) |
20 |
12 19
|
oveq12d |
|- ( ( ph /\ j e. NN0 ) -> ( ( abs ` ( A ^ j ) ) / ( abs ` ( ! ` j ) ) ) = ( ( ( abs ` A ) ^ j ) / ( ! ` j ) ) ) |
21 |
|
expcl |
|- ( ( A e. CC /\ j e. NN0 ) -> ( A ^ j ) e. CC ) |
22 |
4 21
|
sylan |
|- ( ( ph /\ j e. NN0 ) -> ( A ^ j ) e. CC ) |
23 |
14
|
nncnd |
|- ( ( ph /\ j e. NN0 ) -> ( ! ` j ) e. CC ) |
24 |
14
|
nnne0d |
|- ( ( ph /\ j e. NN0 ) -> ( ! ` j ) =/= 0 ) |
25 |
22 23 24
|
absdivd |
|- ( ( ph /\ j e. NN0 ) -> ( abs ` ( ( A ^ j ) / ( ! ` j ) ) ) = ( ( abs ` ( A ^ j ) ) / ( abs ` ( ! ` j ) ) ) ) |
26 |
|
eqid |
|- ( n e. NN0 |-> ( ( ( abs ` A ) ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( ( abs ` A ) ^ n ) / ( ! ` n ) ) ) |
27 |
26
|
eftval |
|- ( j e. NN0 -> ( ( n e. NN0 |-> ( ( ( abs ` A ) ^ n ) / ( ! ` n ) ) ) ` j ) = ( ( ( abs ` A ) ^ j ) / ( ! ` j ) ) ) |
28 |
27
|
adantl |
|- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( ( ( abs ` A ) ^ n ) / ( ! ` n ) ) ) ` j ) = ( ( ( abs ` A ) ^ j ) / ( ! ` j ) ) ) |
29 |
20 25 28
|
3eqtr4rd |
|- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( ( ( abs ` A ) ^ n ) / ( ! ` n ) ) ) ` j ) = ( abs ` ( ( A ^ j ) / ( ! ` j ) ) ) ) |
30 |
|
eftcl |
|- ( ( A e. CC /\ j e. NN0 ) -> ( ( A ^ j ) / ( ! ` j ) ) e. CC ) |
31 |
4 30
|
sylan |
|- ( ( ph /\ j e. NN0 ) -> ( ( A ^ j ) / ( ! ` j ) ) e. CC ) |
32 |
2
|
eftval |
|- ( k e. NN0 -> ( G ` k ) = ( ( B ^ k ) / ( ! ` k ) ) ) |
33 |
32
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> ( G ` k ) = ( ( B ^ k ) / ( ! ` k ) ) ) |
34 |
|
eftcl |
|- ( ( B e. CC /\ k e. NN0 ) -> ( ( B ^ k ) / ( ! ` k ) ) e. CC ) |
35 |
5 34
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( ( B ^ k ) / ( ! ` k ) ) e. CC ) |
36 |
3
|
eftval |
|- ( k e. NN0 -> ( H ` k ) = ( ( ( A + B ) ^ k ) / ( ! ` k ) ) ) |
37 |
36
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> ( H ` k ) = ( ( ( A + B ) ^ k ) / ( ! ` k ) ) ) |
38 |
4
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> A e. CC ) |
39 |
5
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> B e. CC ) |
40 |
|
simpr |
|- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
41 |
|
binom |
|- ( ( A e. CC /\ B e. CC /\ k e. NN0 ) -> ( ( A + B ) ^ k ) = sum_ j e. ( 0 ... k ) ( ( k _C j ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) ) |
42 |
38 39 40 41
|
syl3anc |
|- ( ( ph /\ k e. NN0 ) -> ( ( A + B ) ^ k ) = sum_ j e. ( 0 ... k ) ( ( k _C j ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) ) |
43 |
42
|
oveq1d |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( A + B ) ^ k ) / ( ! ` k ) ) = ( sum_ j e. ( 0 ... k ) ( ( k _C j ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) / ( ! ` k ) ) ) |
44 |
|
fzfid |
|- ( ( ph /\ k e. NN0 ) -> ( 0 ... k ) e. Fin ) |
45 |
|
faccl |
|- ( k e. NN0 -> ( ! ` k ) e. NN ) |
46 |
45
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> ( ! ` k ) e. NN ) |
47 |
46
|
nncnd |
|- ( ( ph /\ k e. NN0 ) -> ( ! ` k ) e. CC ) |
48 |
|
bccl2 |
|- ( j e. ( 0 ... k ) -> ( k _C j ) e. NN ) |
49 |
48
|
adantl |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( k _C j ) e. NN ) |
50 |
49
|
nncnd |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( k _C j ) e. CC ) |
51 |
4
|
ad2antrr |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> A e. CC ) |
52 |
|
fznn0sub |
|- ( j e. ( 0 ... k ) -> ( k - j ) e. NN0 ) |
53 |
52
|
adantl |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( k - j ) e. NN0 ) |
54 |
51 53
|
expcld |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( A ^ ( k - j ) ) e. CC ) |
55 |
5
|
ad2antrr |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> B e. CC ) |
56 |
|
elfznn0 |
|- ( j e. ( 0 ... k ) -> j e. NN0 ) |
57 |
56
|
adantl |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> j e. NN0 ) |
58 |
55 57
|
expcld |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( B ^ j ) e. CC ) |
59 |
54 58
|
mulcld |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) e. CC ) |
60 |
50 59
|
mulcld |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( k _C j ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) e. CC ) |
61 |
46
|
nnne0d |
|- ( ( ph /\ k e. NN0 ) -> ( ! ` k ) =/= 0 ) |
62 |
44 47 60 61
|
fsumdivc |
|- ( ( ph /\ k e. NN0 ) -> ( sum_ j e. ( 0 ... k ) ( ( k _C j ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) / ( ! ` k ) ) = sum_ j e. ( 0 ... k ) ( ( ( k _C j ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) / ( ! ` k ) ) ) |
63 |
51 57
|
expcld |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( A ^ j ) e. CC ) |
64 |
57 13
|
syl |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ! ` j ) e. NN ) |
65 |
64
|
nncnd |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ! ` j ) e. CC ) |
66 |
64
|
nnne0d |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ! ` j ) =/= 0 ) |
67 |
63 65 66
|
divcld |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( A ^ j ) / ( ! ` j ) ) e. CC ) |
68 |
2
|
eftval |
|- ( ( k - j ) e. NN0 -> ( G ` ( k - j ) ) = ( ( B ^ ( k - j ) ) / ( ! ` ( k - j ) ) ) ) |
69 |
53 68
|
syl |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( G ` ( k - j ) ) = ( ( B ^ ( k - j ) ) / ( ! ` ( k - j ) ) ) ) |
70 |
55 53
|
expcld |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( B ^ ( k - j ) ) e. CC ) |
71 |
|
faccl |
|- ( ( k - j ) e. NN0 -> ( ! ` ( k - j ) ) e. NN ) |
72 |
53 71
|
syl |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ! ` ( k - j ) ) e. NN ) |
73 |
72
|
nncnd |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ! ` ( k - j ) ) e. CC ) |
74 |
72
|
nnne0d |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ! ` ( k - j ) ) =/= 0 ) |
75 |
70 73 74
|
divcld |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( B ^ ( k - j ) ) / ( ! ` ( k - j ) ) ) e. CC ) |
76 |
69 75
|
eqeltrd |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( G ` ( k - j ) ) e. CC ) |
77 |
67 76
|
mulcld |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ( A ^ j ) / ( ! ` j ) ) x. ( G ` ( k - j ) ) ) e. CC ) |
78 |
|
oveq2 |
|- ( j = ( ( 0 + k ) - m ) -> ( A ^ j ) = ( A ^ ( ( 0 + k ) - m ) ) ) |
79 |
|
fveq2 |
|- ( j = ( ( 0 + k ) - m ) -> ( ! ` j ) = ( ! ` ( ( 0 + k ) - m ) ) ) |
80 |
78 79
|
oveq12d |
|- ( j = ( ( 0 + k ) - m ) -> ( ( A ^ j ) / ( ! ` j ) ) = ( ( A ^ ( ( 0 + k ) - m ) ) / ( ! ` ( ( 0 + k ) - m ) ) ) ) |
81 |
|
oveq2 |
|- ( j = ( ( 0 + k ) - m ) -> ( k - j ) = ( k - ( ( 0 + k ) - m ) ) ) |
82 |
81
|
fveq2d |
|- ( j = ( ( 0 + k ) - m ) -> ( G ` ( k - j ) ) = ( G ` ( k - ( ( 0 + k ) - m ) ) ) ) |
83 |
80 82
|
oveq12d |
|- ( j = ( ( 0 + k ) - m ) -> ( ( ( A ^ j ) / ( ! ` j ) ) x. ( G ` ( k - j ) ) ) = ( ( ( A ^ ( ( 0 + k ) - m ) ) / ( ! ` ( ( 0 + k ) - m ) ) ) x. ( G ` ( k - ( ( 0 + k ) - m ) ) ) ) ) |
84 |
77 83
|
fsumrev2 |
|- ( ( ph /\ k e. NN0 ) -> sum_ j e. ( 0 ... k ) ( ( ( A ^ j ) / ( ! ` j ) ) x. ( G ` ( k - j ) ) ) = sum_ m e. ( 0 ... k ) ( ( ( A ^ ( ( 0 + k ) - m ) ) / ( ! ` ( ( 0 + k ) - m ) ) ) x. ( G ` ( k - ( ( 0 + k ) - m ) ) ) ) ) |
85 |
2
|
eftval |
|- ( j e. NN0 -> ( G ` j ) = ( ( B ^ j ) / ( ! ` j ) ) ) |
86 |
57 85
|
syl |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( G ` j ) = ( ( B ^ j ) / ( ! ` j ) ) ) |
87 |
86
|
oveq2d |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ( A ^ ( k - j ) ) / ( ! ` ( k - j ) ) ) x. ( G ` j ) ) = ( ( ( A ^ ( k - j ) ) / ( ! ` ( k - j ) ) ) x. ( ( B ^ j ) / ( ! ` j ) ) ) ) |
88 |
72 64
|
nnmulcld |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) e. NN ) |
89 |
88
|
nncnd |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) e. CC ) |
90 |
88
|
nnne0d |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) =/= 0 ) |
91 |
59 89 90
|
divrec2d |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) / ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) ) = ( ( 1 / ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) ) |
92 |
54 73 58 65 74 66
|
divmuldivd |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ( A ^ ( k - j ) ) / ( ! ` ( k - j ) ) ) x. ( ( B ^ j ) / ( ! ` j ) ) ) = ( ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) / ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) ) ) |
93 |
|
bcval2 |
|- ( j e. ( 0 ... k ) -> ( k _C j ) = ( ( ! ` k ) / ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) ) ) |
94 |
93
|
adantl |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( k _C j ) = ( ( ! ` k ) / ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) ) ) |
95 |
94
|
oveq1d |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( k _C j ) / ( ! ` k ) ) = ( ( ( ! ` k ) / ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) ) / ( ! ` k ) ) ) |
96 |
47
|
adantr |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ! ` k ) e. CC ) |
97 |
61
|
adantr |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ! ` k ) =/= 0 ) |
98 |
96 89 96 90 97
|
divdiv32d |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ( ! ` k ) / ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) ) / ( ! ` k ) ) = ( ( ( ! ` k ) / ( ! ` k ) ) / ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) ) ) |
99 |
96 97
|
dividd |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ! ` k ) / ( ! ` k ) ) = 1 ) |
100 |
99
|
oveq1d |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ( ! ` k ) / ( ! ` k ) ) / ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) ) = ( 1 / ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) ) ) |
101 |
98 100
|
eqtrd |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ( ! ` k ) / ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) ) / ( ! ` k ) ) = ( 1 / ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) ) ) |
102 |
95 101
|
eqtrd |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( k _C j ) / ( ! ` k ) ) = ( 1 / ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) ) ) |
103 |
102
|
oveq1d |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ( k _C j ) / ( ! ` k ) ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) = ( ( 1 / ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) ) |
104 |
91 92 103
|
3eqtr4rd |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ( k _C j ) / ( ! ` k ) ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) = ( ( ( A ^ ( k - j ) ) / ( ! ` ( k - j ) ) ) x. ( ( B ^ j ) / ( ! ` j ) ) ) ) |
105 |
87 104
|
eqtr4d |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ( A ^ ( k - j ) ) / ( ! ` ( k - j ) ) ) x. ( G ` j ) ) = ( ( ( k _C j ) / ( ! ` k ) ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) ) |
106 |
|
nn0cn |
|- ( k e. NN0 -> k e. CC ) |
107 |
106
|
ad2antlr |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> k e. CC ) |
108 |
107
|
addid2d |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( 0 + k ) = k ) |
109 |
108
|
oveq1d |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( 0 + k ) - j ) = ( k - j ) ) |
110 |
109
|
oveq2d |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( A ^ ( ( 0 + k ) - j ) ) = ( A ^ ( k - j ) ) ) |
111 |
109
|
fveq2d |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ! ` ( ( 0 + k ) - j ) ) = ( ! ` ( k - j ) ) ) |
112 |
110 111
|
oveq12d |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( A ^ ( ( 0 + k ) - j ) ) / ( ! ` ( ( 0 + k ) - j ) ) ) = ( ( A ^ ( k - j ) ) / ( ! ` ( k - j ) ) ) ) |
113 |
109
|
oveq2d |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( k - ( ( 0 + k ) - j ) ) = ( k - ( k - j ) ) ) |
114 |
|
nn0cn |
|- ( j e. NN0 -> j e. CC ) |
115 |
57 114
|
syl |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> j e. CC ) |
116 |
107 115
|
nncand |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( k - ( k - j ) ) = j ) |
117 |
113 116
|
eqtrd |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( k - ( ( 0 + k ) - j ) ) = j ) |
118 |
117
|
fveq2d |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( G ` ( k - ( ( 0 + k ) - j ) ) ) = ( G ` j ) ) |
119 |
112 118
|
oveq12d |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ( A ^ ( ( 0 + k ) - j ) ) / ( ! ` ( ( 0 + k ) - j ) ) ) x. ( G ` ( k - ( ( 0 + k ) - j ) ) ) ) = ( ( ( A ^ ( k - j ) ) / ( ! ` ( k - j ) ) ) x. ( G ` j ) ) ) |
120 |
50 59 96 97
|
div23d |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ( k _C j ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) / ( ! ` k ) ) = ( ( ( k _C j ) / ( ! ` k ) ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) ) |
121 |
105 119 120
|
3eqtr4rd |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ( k _C j ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) / ( ! ` k ) ) = ( ( ( A ^ ( ( 0 + k ) - j ) ) / ( ! ` ( ( 0 + k ) - j ) ) ) x. ( G ` ( k - ( ( 0 + k ) - j ) ) ) ) ) |
122 |
121
|
sumeq2dv |
|- ( ( ph /\ k e. NN0 ) -> sum_ j e. ( 0 ... k ) ( ( ( k _C j ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) / ( ! ` k ) ) = sum_ j e. ( 0 ... k ) ( ( ( A ^ ( ( 0 + k ) - j ) ) / ( ! ` ( ( 0 + k ) - j ) ) ) x. ( G ` ( k - ( ( 0 + k ) - j ) ) ) ) ) |
123 |
|
oveq2 |
|- ( j = m -> ( ( 0 + k ) - j ) = ( ( 0 + k ) - m ) ) |
124 |
123
|
oveq2d |
|- ( j = m -> ( A ^ ( ( 0 + k ) - j ) ) = ( A ^ ( ( 0 + k ) - m ) ) ) |
125 |
123
|
fveq2d |
|- ( j = m -> ( ! ` ( ( 0 + k ) - j ) ) = ( ! ` ( ( 0 + k ) - m ) ) ) |
126 |
124 125
|
oveq12d |
|- ( j = m -> ( ( A ^ ( ( 0 + k ) - j ) ) / ( ! ` ( ( 0 + k ) - j ) ) ) = ( ( A ^ ( ( 0 + k ) - m ) ) / ( ! ` ( ( 0 + k ) - m ) ) ) ) |
127 |
123
|
oveq2d |
|- ( j = m -> ( k - ( ( 0 + k ) - j ) ) = ( k - ( ( 0 + k ) - m ) ) ) |
128 |
127
|
fveq2d |
|- ( j = m -> ( G ` ( k - ( ( 0 + k ) - j ) ) ) = ( G ` ( k - ( ( 0 + k ) - m ) ) ) ) |
129 |
126 128
|
oveq12d |
|- ( j = m -> ( ( ( A ^ ( ( 0 + k ) - j ) ) / ( ! ` ( ( 0 + k ) - j ) ) ) x. ( G ` ( k - ( ( 0 + k ) - j ) ) ) ) = ( ( ( A ^ ( ( 0 + k ) - m ) ) / ( ! ` ( ( 0 + k ) - m ) ) ) x. ( G ` ( k - ( ( 0 + k ) - m ) ) ) ) ) |
130 |
129
|
cbvsumv |
|- sum_ j e. ( 0 ... k ) ( ( ( A ^ ( ( 0 + k ) - j ) ) / ( ! ` ( ( 0 + k ) - j ) ) ) x. ( G ` ( k - ( ( 0 + k ) - j ) ) ) ) = sum_ m e. ( 0 ... k ) ( ( ( A ^ ( ( 0 + k ) - m ) ) / ( ! ` ( ( 0 + k ) - m ) ) ) x. ( G ` ( k - ( ( 0 + k ) - m ) ) ) ) |
131 |
122 130
|
eqtrdi |
|- ( ( ph /\ k e. NN0 ) -> sum_ j e. ( 0 ... k ) ( ( ( k _C j ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) / ( ! ` k ) ) = sum_ m e. ( 0 ... k ) ( ( ( A ^ ( ( 0 + k ) - m ) ) / ( ! ` ( ( 0 + k ) - m ) ) ) x. ( G ` ( k - ( ( 0 + k ) - m ) ) ) ) ) |
132 |
84 131
|
eqtr4d |
|- ( ( ph /\ k e. NN0 ) -> sum_ j e. ( 0 ... k ) ( ( ( A ^ j ) / ( ! ` j ) ) x. ( G ` ( k - j ) ) ) = sum_ j e. ( 0 ... k ) ( ( ( k _C j ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) / ( ! ` k ) ) ) |
133 |
62 132
|
eqtr4d |
|- ( ( ph /\ k e. NN0 ) -> ( sum_ j e. ( 0 ... k ) ( ( k _C j ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) / ( ! ` k ) ) = sum_ j e. ( 0 ... k ) ( ( ( A ^ j ) / ( ! ` j ) ) x. ( G ` ( k - j ) ) ) ) |
134 |
43 133
|
eqtrd |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( A + B ) ^ k ) / ( ! ` k ) ) = sum_ j e. ( 0 ... k ) ( ( ( A ^ j ) / ( ! ` j ) ) x. ( G ` ( k - j ) ) ) ) |
135 |
37 134
|
eqtrd |
|- ( ( ph /\ k e. NN0 ) -> ( H ` k ) = sum_ j e. ( 0 ... k ) ( ( ( A ^ j ) / ( ! ` j ) ) x. ( G ` ( k - j ) ) ) ) |
136 |
4
|
abscld |
|- ( ph -> ( abs ` A ) e. RR ) |
137 |
136
|
recnd |
|- ( ph -> ( abs ` A ) e. CC ) |
138 |
26
|
efcllem |
|- ( ( abs ` A ) e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( ( abs ` A ) ^ n ) / ( ! ` n ) ) ) ) e. dom ~~> ) |
139 |
137 138
|
syl |
|- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( ( ( abs ` A ) ^ n ) / ( ! ` n ) ) ) ) e. dom ~~> ) |
140 |
2
|
efcllem |
|- ( B e. CC -> seq 0 ( + , G ) e. dom ~~> ) |
141 |
5 140
|
syl |
|- ( ph -> seq 0 ( + , G ) e. dom ~~> ) |
142 |
10 29 31 33 35 135 139 141
|
mertens |
|- ( ph -> seq 0 ( + , H ) ~~> ( sum_ j e. NN0 ( ( A ^ j ) / ( ! ` j ) ) x. sum_ k e. NN0 ( ( B ^ k ) / ( ! ` k ) ) ) ) |
143 |
|
efval |
|- ( A e. CC -> ( exp ` A ) = sum_ j e. NN0 ( ( A ^ j ) / ( ! ` j ) ) ) |
144 |
4 143
|
syl |
|- ( ph -> ( exp ` A ) = sum_ j e. NN0 ( ( A ^ j ) / ( ! ` j ) ) ) |
145 |
|
efval |
|- ( B e. CC -> ( exp ` B ) = sum_ k e. NN0 ( ( B ^ k ) / ( ! ` k ) ) ) |
146 |
5 145
|
syl |
|- ( ph -> ( exp ` B ) = sum_ k e. NN0 ( ( B ^ k ) / ( ! ` k ) ) ) |
147 |
144 146
|
oveq12d |
|- ( ph -> ( ( exp ` A ) x. ( exp ` B ) ) = ( sum_ j e. NN0 ( ( A ^ j ) / ( ! ` j ) ) x. sum_ k e. NN0 ( ( B ^ k ) / ( ! ` k ) ) ) ) |
148 |
142 147
|
breqtrrd |
|- ( ph -> seq 0 ( + , H ) ~~> ( ( exp ` A ) x. ( exp ` B ) ) ) |
149 |
|
climuni |
|- ( ( seq 0 ( + , H ) ~~> ( exp ` ( A + B ) ) /\ seq 0 ( + , H ) ~~> ( ( exp ` A ) x. ( exp ` B ) ) ) -> ( exp ` ( A + B ) ) = ( ( exp ` A ) x. ( exp ` B ) ) ) |
150 |
8 148 149
|
syl2anc |
|- ( ph -> ( exp ` ( A + B ) ) = ( ( exp ` A ) x. ( exp ` B ) ) ) |