Step |
Hyp |
Ref |
Expression |
1 |
|
chpval |
|- ( A e. RR -> ( psi ` A ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( Lam ` n ) ) |
2 |
1
|
fveq2d |
|- ( A e. RR -> ( exp ` ( psi ` A ) ) = ( exp ` sum_ n e. ( 1 ... ( |_ ` A ) ) ( Lam ` n ) ) ) |
3 |
|
fzfid |
|- ( A e. RR -> ( 1 ... ( |_ ` A ) ) e. Fin ) |
4 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` A ) ) -> n e. NN ) |
5 |
4
|
adantl |
|- ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. NN ) |
6 |
|
vmacl |
|- ( n e. NN -> ( Lam ` n ) e. RR ) |
7 |
5 6
|
syl |
|- ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( Lam ` n ) e. RR ) |
8 |
|
efvmacl |
|- ( n e. NN -> ( exp ` ( Lam ` n ) ) e. NN ) |
9 |
5 8
|
syl |
|- ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( exp ` ( Lam ` n ) ) e. NN ) |
10 |
3 7 9
|
efnnfsumcl |
|- ( A e. RR -> ( exp ` sum_ n e. ( 1 ... ( |_ ` A ) ) ( Lam ` n ) ) e. NN ) |
11 |
2 10
|
eqeltrd |
|- ( A e. RR -> ( exp ` ( psi ` A ) ) e. NN ) |