| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chpval |  |-  ( A e. RR -> ( psi ` A ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( Lam ` n ) ) | 
						
							| 2 | 1 | fveq2d |  |-  ( A e. RR -> ( exp ` ( psi ` A ) ) = ( exp ` sum_ n e. ( 1 ... ( |_ ` A ) ) ( Lam ` n ) ) ) | 
						
							| 3 |  | fzfid |  |-  ( A e. RR -> ( 1 ... ( |_ ` A ) ) e. Fin ) | 
						
							| 4 |  | elfznn |  |-  ( n e. ( 1 ... ( |_ ` A ) ) -> n e. NN ) | 
						
							| 5 | 4 | adantl |  |-  ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. NN ) | 
						
							| 6 |  | vmacl |  |-  ( n e. NN -> ( Lam ` n ) e. RR ) | 
						
							| 7 | 5 6 | syl |  |-  ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( Lam ` n ) e. RR ) | 
						
							| 8 |  | efvmacl |  |-  ( n e. NN -> ( exp ` ( Lam ` n ) ) e. NN ) | 
						
							| 9 | 5 8 | syl |  |-  ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( exp ` ( Lam ` n ) ) e. NN ) | 
						
							| 10 | 3 7 9 | efnnfsumcl |  |-  ( A e. RR -> ( exp ` sum_ n e. ( 1 ... ( |_ ` A ) ) ( Lam ` n ) ) e. NN ) | 
						
							| 11 | 2 10 | eqeltrd |  |-  ( A e. RR -> ( exp ` ( psi ` A ) ) e. NN ) |