| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cjcl |
|- ( A e. CC -> ( * ` A ) e. CC ) |
| 2 |
|
eqid |
|- ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) |
| 3 |
2
|
efcvg |
|- ( ( * ` A ) e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ) ~~> ( exp ` ( * ` A ) ) ) |
| 4 |
1 3
|
syl |
|- ( A e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ) ~~> ( exp ` ( * ` A ) ) ) |
| 5 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 6 |
|
eqid |
|- ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
| 7 |
6
|
efcvg |
|- ( A e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ~~> ( exp ` A ) ) |
| 8 |
|
seqex |
|- seq 0 ( + , ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ) e. _V |
| 9 |
8
|
a1i |
|- ( A e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ) e. _V ) |
| 10 |
|
0zd |
|- ( A e. CC -> 0 e. ZZ ) |
| 11 |
6
|
eftval |
|- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 12 |
11
|
adantl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 13 |
|
eftcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. CC ) |
| 14 |
12 13
|
eqeltrd |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) e. CC ) |
| 15 |
5 10 14
|
serf |
|- ( A e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) : NN0 --> CC ) |
| 16 |
15
|
ffvelcdmda |
|- ( ( A e. CC /\ j e. NN0 ) -> ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` j ) e. CC ) |
| 17 |
|
addcl |
|- ( ( k e. CC /\ m e. CC ) -> ( k + m ) e. CC ) |
| 18 |
17
|
adantl |
|- ( ( ( A e. CC /\ j e. NN0 ) /\ ( k e. CC /\ m e. CC ) ) -> ( k + m ) e. CC ) |
| 19 |
|
simpl |
|- ( ( A e. CC /\ j e. NN0 ) -> A e. CC ) |
| 20 |
|
elfznn0 |
|- ( k e. ( 0 ... j ) -> k e. NN0 ) |
| 21 |
19 20 14
|
syl2an |
|- ( ( ( A e. CC /\ j e. NN0 ) /\ k e. ( 0 ... j ) ) -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) e. CC ) |
| 22 |
|
simpr |
|- ( ( A e. CC /\ j e. NN0 ) -> j e. NN0 ) |
| 23 |
22 5
|
eleqtrdi |
|- ( ( A e. CC /\ j e. NN0 ) -> j e. ( ZZ>= ` 0 ) ) |
| 24 |
|
cjadd |
|- ( ( k e. CC /\ m e. CC ) -> ( * ` ( k + m ) ) = ( ( * ` k ) + ( * ` m ) ) ) |
| 25 |
24
|
adantl |
|- ( ( ( A e. CC /\ j e. NN0 ) /\ ( k e. CC /\ m e. CC ) ) -> ( * ` ( k + m ) ) = ( ( * ` k ) + ( * ` m ) ) ) |
| 26 |
|
expcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
| 27 |
|
faccl |
|- ( k e. NN0 -> ( ! ` k ) e. NN ) |
| 28 |
27
|
adantl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ! ` k ) e. NN ) |
| 29 |
28
|
nncnd |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ! ` k ) e. CC ) |
| 30 |
28
|
nnne0d |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ! ` k ) =/= 0 ) |
| 31 |
26 29 30
|
cjdivd |
|- ( ( A e. CC /\ k e. NN0 ) -> ( * ` ( ( A ^ k ) / ( ! ` k ) ) ) = ( ( * ` ( A ^ k ) ) / ( * ` ( ! ` k ) ) ) ) |
| 32 |
|
cjexp |
|- ( ( A e. CC /\ k e. NN0 ) -> ( * ` ( A ^ k ) ) = ( ( * ` A ) ^ k ) ) |
| 33 |
28
|
nnred |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ! ` k ) e. RR ) |
| 34 |
33
|
cjred |
|- ( ( A e. CC /\ k e. NN0 ) -> ( * ` ( ! ` k ) ) = ( ! ` k ) ) |
| 35 |
32 34
|
oveq12d |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ( * ` ( A ^ k ) ) / ( * ` ( ! ` k ) ) ) = ( ( ( * ` A ) ^ k ) / ( ! ` k ) ) ) |
| 36 |
31 35
|
eqtrd |
|- ( ( A e. CC /\ k e. NN0 ) -> ( * ` ( ( A ^ k ) / ( ! ` k ) ) ) = ( ( ( * ` A ) ^ k ) / ( ! ` k ) ) ) |
| 37 |
12
|
fveq2d |
|- ( ( A e. CC /\ k e. NN0 ) -> ( * ` ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) ) = ( * ` ( ( A ^ k ) / ( ! ` k ) ) ) ) |
| 38 |
2
|
eftval |
|- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( ( * ` A ) ^ k ) / ( ! ` k ) ) ) |
| 39 |
38
|
adantl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( ( * ` A ) ^ k ) / ( ! ` k ) ) ) |
| 40 |
36 37 39
|
3eqtr4d |
|- ( ( A e. CC /\ k e. NN0 ) -> ( * ` ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) ) = ( ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) |
| 41 |
19 20 40
|
syl2an |
|- ( ( ( A e. CC /\ j e. NN0 ) /\ k e. ( 0 ... j ) ) -> ( * ` ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) ) = ( ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) |
| 42 |
18 21 23 25 41
|
seqhomo |
|- ( ( A e. CC /\ j e. NN0 ) -> ( * ` ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` j ) ) = ( seq 0 ( + , ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ) ` j ) ) |
| 43 |
42
|
eqcomd |
|- ( ( A e. CC /\ j e. NN0 ) -> ( seq 0 ( + , ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ) ` j ) = ( * ` ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` j ) ) ) |
| 44 |
5 7 9 10 16 43
|
climcj |
|- ( A e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ) ~~> ( * ` ( exp ` A ) ) ) |
| 45 |
|
climuni |
|- ( ( seq 0 ( + , ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ) ~~> ( exp ` ( * ` A ) ) /\ seq 0 ( + , ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ) ~~> ( * ` ( exp ` A ) ) ) -> ( exp ` ( * ` A ) ) = ( * ` ( exp ` A ) ) ) |
| 46 |
4 44 45
|
syl2anc |
|- ( A e. CC -> ( exp ` ( * ` A ) ) = ( * ` ( exp ` A ) ) ) |