Step |
Hyp |
Ref |
Expression |
1 |
|
cjcl |
|- ( A e. CC -> ( * ` A ) e. CC ) |
2 |
|
eqid |
|- ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) |
3 |
2
|
efcvg |
|- ( ( * ` A ) e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ) ~~> ( exp ` ( * ` A ) ) ) |
4 |
1 3
|
syl |
|- ( A e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ) ~~> ( exp ` ( * ` A ) ) ) |
5 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
6 |
|
eqid |
|- ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
7 |
6
|
efcvg |
|- ( A e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ~~> ( exp ` A ) ) |
8 |
|
seqex |
|- seq 0 ( + , ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ) e. _V |
9 |
8
|
a1i |
|- ( A e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ) e. _V ) |
10 |
|
0zd |
|- ( A e. CC -> 0 e. ZZ ) |
11 |
6
|
eftval |
|- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
12 |
11
|
adantl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
13 |
|
eftcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. CC ) |
14 |
12 13
|
eqeltrd |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) e. CC ) |
15 |
5 10 14
|
serf |
|- ( A e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) : NN0 --> CC ) |
16 |
15
|
ffvelrnda |
|- ( ( A e. CC /\ j e. NN0 ) -> ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` j ) e. CC ) |
17 |
|
addcl |
|- ( ( k e. CC /\ m e. CC ) -> ( k + m ) e. CC ) |
18 |
17
|
adantl |
|- ( ( ( A e. CC /\ j e. NN0 ) /\ ( k e. CC /\ m e. CC ) ) -> ( k + m ) e. CC ) |
19 |
|
simpl |
|- ( ( A e. CC /\ j e. NN0 ) -> A e. CC ) |
20 |
|
elfznn0 |
|- ( k e. ( 0 ... j ) -> k e. NN0 ) |
21 |
19 20 14
|
syl2an |
|- ( ( ( A e. CC /\ j e. NN0 ) /\ k e. ( 0 ... j ) ) -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) e. CC ) |
22 |
|
simpr |
|- ( ( A e. CC /\ j e. NN0 ) -> j e. NN0 ) |
23 |
22 5
|
eleqtrdi |
|- ( ( A e. CC /\ j e. NN0 ) -> j e. ( ZZ>= ` 0 ) ) |
24 |
|
cjadd |
|- ( ( k e. CC /\ m e. CC ) -> ( * ` ( k + m ) ) = ( ( * ` k ) + ( * ` m ) ) ) |
25 |
24
|
adantl |
|- ( ( ( A e. CC /\ j e. NN0 ) /\ ( k e. CC /\ m e. CC ) ) -> ( * ` ( k + m ) ) = ( ( * ` k ) + ( * ` m ) ) ) |
26 |
|
expcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
27 |
|
faccl |
|- ( k e. NN0 -> ( ! ` k ) e. NN ) |
28 |
27
|
adantl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ! ` k ) e. NN ) |
29 |
28
|
nncnd |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ! ` k ) e. CC ) |
30 |
28
|
nnne0d |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ! ` k ) =/= 0 ) |
31 |
26 29 30
|
cjdivd |
|- ( ( A e. CC /\ k e. NN0 ) -> ( * ` ( ( A ^ k ) / ( ! ` k ) ) ) = ( ( * ` ( A ^ k ) ) / ( * ` ( ! ` k ) ) ) ) |
32 |
|
cjexp |
|- ( ( A e. CC /\ k e. NN0 ) -> ( * ` ( A ^ k ) ) = ( ( * ` A ) ^ k ) ) |
33 |
28
|
nnred |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ! ` k ) e. RR ) |
34 |
33
|
cjred |
|- ( ( A e. CC /\ k e. NN0 ) -> ( * ` ( ! ` k ) ) = ( ! ` k ) ) |
35 |
32 34
|
oveq12d |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ( * ` ( A ^ k ) ) / ( * ` ( ! ` k ) ) ) = ( ( ( * ` A ) ^ k ) / ( ! ` k ) ) ) |
36 |
31 35
|
eqtrd |
|- ( ( A e. CC /\ k e. NN0 ) -> ( * ` ( ( A ^ k ) / ( ! ` k ) ) ) = ( ( ( * ` A ) ^ k ) / ( ! ` k ) ) ) |
37 |
12
|
fveq2d |
|- ( ( A e. CC /\ k e. NN0 ) -> ( * ` ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) ) = ( * ` ( ( A ^ k ) / ( ! ` k ) ) ) ) |
38 |
2
|
eftval |
|- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( ( * ` A ) ^ k ) / ( ! ` k ) ) ) |
39 |
38
|
adantl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( ( * ` A ) ^ k ) / ( ! ` k ) ) ) |
40 |
36 37 39
|
3eqtr4d |
|- ( ( A e. CC /\ k e. NN0 ) -> ( * ` ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) ) = ( ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) |
41 |
19 20 40
|
syl2an |
|- ( ( ( A e. CC /\ j e. NN0 ) /\ k e. ( 0 ... j ) ) -> ( * ` ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) ) = ( ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) |
42 |
18 21 23 25 41
|
seqhomo |
|- ( ( A e. CC /\ j e. NN0 ) -> ( * ` ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` j ) ) = ( seq 0 ( + , ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ) ` j ) ) |
43 |
42
|
eqcomd |
|- ( ( A e. CC /\ j e. NN0 ) -> ( seq 0 ( + , ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ) ` j ) = ( * ` ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` j ) ) ) |
44 |
5 7 9 10 16 43
|
climcj |
|- ( A e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ) ~~> ( * ` ( exp ` A ) ) ) |
45 |
|
climuni |
|- ( ( seq 0 ( + , ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ) ~~> ( exp ` ( * ` A ) ) /\ seq 0 ( + , ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ) ~~> ( * ` ( exp ` A ) ) ) -> ( exp ` ( * ` A ) ) = ( * ` ( exp ` A ) ) ) |
46 |
4 44 45
|
syl2anc |
|- ( A e. CC -> ( exp ` ( * ` A ) ) = ( * ` ( exp ` A ) ) ) |