Metamath Proof Explorer


Theorem efcl

Description: Closure law for the exponential function. (Contributed by NM, 8-Jan-2006) (Revised by Mario Carneiro, 10-Nov-2013)

Ref Expression
Assertion efcl
|- ( A e. CC -> ( exp ` A ) e. CC )

Proof

Step Hyp Ref Expression
1 eff
 |-  exp : CC --> CC
2 1 ffvelrni
 |-  ( A e. CC -> ( exp ` A ) e. CC )