| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eftval.1 |
|- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
| 2 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 3 |
|
eqid |
|- ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) = ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) |
| 4 |
|
halfre |
|- ( 1 / 2 ) e. RR |
| 5 |
4
|
a1i |
|- ( A e. CC -> ( 1 / 2 ) e. RR ) |
| 6 |
|
halflt1 |
|- ( 1 / 2 ) < 1 |
| 7 |
6
|
a1i |
|- ( A e. CC -> ( 1 / 2 ) < 1 ) |
| 8 |
|
2re |
|- 2 e. RR |
| 9 |
|
abscl |
|- ( A e. CC -> ( abs ` A ) e. RR ) |
| 10 |
|
remulcl |
|- ( ( 2 e. RR /\ ( abs ` A ) e. RR ) -> ( 2 x. ( abs ` A ) ) e. RR ) |
| 11 |
8 9 10
|
sylancr |
|- ( A e. CC -> ( 2 x. ( abs ` A ) ) e. RR ) |
| 12 |
8
|
a1i |
|- ( A e. CC -> 2 e. RR ) |
| 13 |
|
0le2 |
|- 0 <_ 2 |
| 14 |
13
|
a1i |
|- ( A e. CC -> 0 <_ 2 ) |
| 15 |
|
absge0 |
|- ( A e. CC -> 0 <_ ( abs ` A ) ) |
| 16 |
12 9 14 15
|
mulge0d |
|- ( A e. CC -> 0 <_ ( 2 x. ( abs ` A ) ) ) |
| 17 |
|
flge0nn0 |
|- ( ( ( 2 x. ( abs ` A ) ) e. RR /\ 0 <_ ( 2 x. ( abs ` A ) ) ) -> ( |_ ` ( 2 x. ( abs ` A ) ) ) e. NN0 ) |
| 18 |
11 16 17
|
syl2anc |
|- ( A e. CC -> ( |_ ` ( 2 x. ( abs ` A ) ) ) e. NN0 ) |
| 19 |
1
|
eftval |
|- ( k e. NN0 -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 20 |
19
|
adantl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 21 |
|
eftcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. CC ) |
| 22 |
20 21
|
eqeltrd |
|- ( ( A e. CC /\ k e. NN0 ) -> ( F ` k ) e. CC ) |
| 23 |
9
|
adantr |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` A ) e. RR ) |
| 24 |
|
eluznn0 |
|- ( ( ( |_ ` ( 2 x. ( abs ` A ) ) ) e. NN0 /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> k e. NN0 ) |
| 25 |
18 24
|
sylan |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> k e. NN0 ) |
| 26 |
|
nn0p1nn |
|- ( k e. NN0 -> ( k + 1 ) e. NN ) |
| 27 |
25 26
|
syl |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( k + 1 ) e. NN ) |
| 28 |
23 27
|
nndivred |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( abs ` A ) / ( k + 1 ) ) e. RR ) |
| 29 |
4
|
a1i |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( 1 / 2 ) e. RR ) |
| 30 |
23 25
|
reexpcld |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( abs ` A ) ^ k ) e. RR ) |
| 31 |
25
|
faccld |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ! ` k ) e. NN ) |
| 32 |
30 31
|
nndivred |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) e. RR ) |
| 33 |
|
expcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
| 34 |
25 33
|
syldan |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( A ^ k ) e. CC ) |
| 35 |
34
|
absge0d |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> 0 <_ ( abs ` ( A ^ k ) ) ) |
| 36 |
|
absexp |
|- ( ( A e. CC /\ k e. NN0 ) -> ( abs ` ( A ^ k ) ) = ( ( abs ` A ) ^ k ) ) |
| 37 |
25 36
|
syldan |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` ( A ^ k ) ) = ( ( abs ` A ) ^ k ) ) |
| 38 |
35 37
|
breqtrd |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> 0 <_ ( ( abs ` A ) ^ k ) ) |
| 39 |
31
|
nnred |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ! ` k ) e. RR ) |
| 40 |
31
|
nngt0d |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> 0 < ( ! ` k ) ) |
| 41 |
|
divge0 |
|- ( ( ( ( ( abs ` A ) ^ k ) e. RR /\ 0 <_ ( ( abs ` A ) ^ k ) ) /\ ( ( ! ` k ) e. RR /\ 0 < ( ! ` k ) ) ) -> 0 <_ ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) ) |
| 42 |
30 38 39 40 41
|
syl22anc |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> 0 <_ ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) ) |
| 43 |
11
|
adantr |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( 2 x. ( abs ` A ) ) e. RR ) |
| 44 |
|
peano2nn0 |
|- ( ( |_ ` ( 2 x. ( abs ` A ) ) ) e. NN0 -> ( ( |_ ` ( 2 x. ( abs ` A ) ) ) + 1 ) e. NN0 ) |
| 45 |
18 44
|
syl |
|- ( A e. CC -> ( ( |_ ` ( 2 x. ( abs ` A ) ) ) + 1 ) e. NN0 ) |
| 46 |
45
|
nn0red |
|- ( A e. CC -> ( ( |_ ` ( 2 x. ( abs ` A ) ) ) + 1 ) e. RR ) |
| 47 |
46
|
adantr |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( |_ ` ( 2 x. ( abs ` A ) ) ) + 1 ) e. RR ) |
| 48 |
27
|
nnred |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( k + 1 ) e. RR ) |
| 49 |
|
flltp1 |
|- ( ( 2 x. ( abs ` A ) ) e. RR -> ( 2 x. ( abs ` A ) ) < ( ( |_ ` ( 2 x. ( abs ` A ) ) ) + 1 ) ) |
| 50 |
43 49
|
syl |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( 2 x. ( abs ` A ) ) < ( ( |_ ` ( 2 x. ( abs ` A ) ) ) + 1 ) ) |
| 51 |
|
eluzp1p1 |
|- ( k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) -> ( k + 1 ) e. ( ZZ>= ` ( ( |_ ` ( 2 x. ( abs ` A ) ) ) + 1 ) ) ) |
| 52 |
51
|
adantl |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( k + 1 ) e. ( ZZ>= ` ( ( |_ ` ( 2 x. ( abs ` A ) ) ) + 1 ) ) ) |
| 53 |
|
eluzle |
|- ( ( k + 1 ) e. ( ZZ>= ` ( ( |_ ` ( 2 x. ( abs ` A ) ) ) + 1 ) ) -> ( ( |_ ` ( 2 x. ( abs ` A ) ) ) + 1 ) <_ ( k + 1 ) ) |
| 54 |
52 53
|
syl |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( |_ ` ( 2 x. ( abs ` A ) ) ) + 1 ) <_ ( k + 1 ) ) |
| 55 |
43 47 48 50 54
|
ltletrd |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( 2 x. ( abs ` A ) ) < ( k + 1 ) ) |
| 56 |
23
|
recnd |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` A ) e. CC ) |
| 57 |
|
2cn |
|- 2 e. CC |
| 58 |
|
mulcom |
|- ( ( ( abs ` A ) e. CC /\ 2 e. CC ) -> ( ( abs ` A ) x. 2 ) = ( 2 x. ( abs ` A ) ) ) |
| 59 |
56 57 58
|
sylancl |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( abs ` A ) x. 2 ) = ( 2 x. ( abs ` A ) ) ) |
| 60 |
27
|
nncnd |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( k + 1 ) e. CC ) |
| 61 |
60
|
mullidd |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( 1 x. ( k + 1 ) ) = ( k + 1 ) ) |
| 62 |
55 59 61
|
3brtr4d |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( abs ` A ) x. 2 ) < ( 1 x. ( k + 1 ) ) ) |
| 63 |
|
2rp |
|- 2 e. RR+ |
| 64 |
63
|
a1i |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> 2 e. RR+ ) |
| 65 |
|
1red |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> 1 e. RR ) |
| 66 |
27
|
nnrpd |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( k + 1 ) e. RR+ ) |
| 67 |
23 64 65 66
|
lt2mul2divd |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( ( abs ` A ) x. 2 ) < ( 1 x. ( k + 1 ) ) <-> ( ( abs ` A ) / ( k + 1 ) ) < ( 1 / 2 ) ) ) |
| 68 |
62 67
|
mpbid |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( abs ` A ) / ( k + 1 ) ) < ( 1 / 2 ) ) |
| 69 |
|
ltle |
|- ( ( ( ( abs ` A ) / ( k + 1 ) ) e. RR /\ ( 1 / 2 ) e. RR ) -> ( ( ( abs ` A ) / ( k + 1 ) ) < ( 1 / 2 ) -> ( ( abs ` A ) / ( k + 1 ) ) <_ ( 1 / 2 ) ) ) |
| 70 |
28 4 69
|
sylancl |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( ( abs ` A ) / ( k + 1 ) ) < ( 1 / 2 ) -> ( ( abs ` A ) / ( k + 1 ) ) <_ ( 1 / 2 ) ) ) |
| 71 |
68 70
|
mpd |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( abs ` A ) / ( k + 1 ) ) <_ ( 1 / 2 ) ) |
| 72 |
28 29 32 42 71
|
lemul2ad |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) x. ( ( abs ` A ) / ( k + 1 ) ) ) <_ ( ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) x. ( 1 / 2 ) ) ) |
| 73 |
|
peano2nn0 |
|- ( k e. NN0 -> ( k + 1 ) e. NN0 ) |
| 74 |
25 73
|
syl |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( k + 1 ) e. NN0 ) |
| 75 |
1
|
eftval |
|- ( ( k + 1 ) e. NN0 -> ( F ` ( k + 1 ) ) = ( ( A ^ ( k + 1 ) ) / ( ! ` ( k + 1 ) ) ) ) |
| 76 |
74 75
|
syl |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( F ` ( k + 1 ) ) = ( ( A ^ ( k + 1 ) ) / ( ! ` ( k + 1 ) ) ) ) |
| 77 |
76
|
fveq2d |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` ( F ` ( k + 1 ) ) ) = ( abs ` ( ( A ^ ( k + 1 ) ) / ( ! ` ( k + 1 ) ) ) ) ) |
| 78 |
|
absexp |
|- ( ( A e. CC /\ ( k + 1 ) e. NN0 ) -> ( abs ` ( A ^ ( k + 1 ) ) ) = ( ( abs ` A ) ^ ( k + 1 ) ) ) |
| 79 |
74 78
|
syldan |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` ( A ^ ( k + 1 ) ) ) = ( ( abs ` A ) ^ ( k + 1 ) ) ) |
| 80 |
56 25
|
expp1d |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( abs ` A ) ^ ( k + 1 ) ) = ( ( ( abs ` A ) ^ k ) x. ( abs ` A ) ) ) |
| 81 |
79 80
|
eqtrd |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` ( A ^ ( k + 1 ) ) ) = ( ( ( abs ` A ) ^ k ) x. ( abs ` A ) ) ) |
| 82 |
74
|
faccld |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ! ` ( k + 1 ) ) e. NN ) |
| 83 |
82
|
nnred |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ! ` ( k + 1 ) ) e. RR ) |
| 84 |
82
|
nnnn0d |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ! ` ( k + 1 ) ) e. NN0 ) |
| 85 |
84
|
nn0ge0d |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> 0 <_ ( ! ` ( k + 1 ) ) ) |
| 86 |
83 85
|
absidd |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` ( ! ` ( k + 1 ) ) ) = ( ! ` ( k + 1 ) ) ) |
| 87 |
|
facp1 |
|- ( k e. NN0 -> ( ! ` ( k + 1 ) ) = ( ( ! ` k ) x. ( k + 1 ) ) ) |
| 88 |
25 87
|
syl |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ! ` ( k + 1 ) ) = ( ( ! ` k ) x. ( k + 1 ) ) ) |
| 89 |
86 88
|
eqtrd |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` ( ! ` ( k + 1 ) ) ) = ( ( ! ` k ) x. ( k + 1 ) ) ) |
| 90 |
81 89
|
oveq12d |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( abs ` ( A ^ ( k + 1 ) ) ) / ( abs ` ( ! ` ( k + 1 ) ) ) ) = ( ( ( ( abs ` A ) ^ k ) x. ( abs ` A ) ) / ( ( ! ` k ) x. ( k + 1 ) ) ) ) |
| 91 |
|
expcl |
|- ( ( A e. CC /\ ( k + 1 ) e. NN0 ) -> ( A ^ ( k + 1 ) ) e. CC ) |
| 92 |
74 91
|
syldan |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( A ^ ( k + 1 ) ) e. CC ) |
| 93 |
82
|
nncnd |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ! ` ( k + 1 ) ) e. CC ) |
| 94 |
82
|
nnne0d |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ! ` ( k + 1 ) ) =/= 0 ) |
| 95 |
92 93 94
|
absdivd |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` ( ( A ^ ( k + 1 ) ) / ( ! ` ( k + 1 ) ) ) ) = ( ( abs ` ( A ^ ( k + 1 ) ) ) / ( abs ` ( ! ` ( k + 1 ) ) ) ) ) |
| 96 |
30
|
recnd |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( abs ` A ) ^ k ) e. CC ) |
| 97 |
31
|
nncnd |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ! ` k ) e. CC ) |
| 98 |
31
|
nnne0d |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ! ` k ) =/= 0 ) |
| 99 |
27
|
nnne0d |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( k + 1 ) =/= 0 ) |
| 100 |
96 97 56 60 98 99
|
divmuldivd |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) x. ( ( abs ` A ) / ( k + 1 ) ) ) = ( ( ( ( abs ` A ) ^ k ) x. ( abs ` A ) ) / ( ( ! ` k ) x. ( k + 1 ) ) ) ) |
| 101 |
90 95 100
|
3eqtr4d |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` ( ( A ^ ( k + 1 ) ) / ( ! ` ( k + 1 ) ) ) ) = ( ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) x. ( ( abs ` A ) / ( k + 1 ) ) ) ) |
| 102 |
77 101
|
eqtrd |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` ( F ` ( k + 1 ) ) ) = ( ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) x. ( ( abs ` A ) / ( k + 1 ) ) ) ) |
| 103 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
| 104 |
25 22
|
syldan |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( F ` k ) e. CC ) |
| 105 |
104
|
abscld |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` ( F ` k ) ) e. RR ) |
| 106 |
105
|
recnd |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` ( F ` k ) ) e. CC ) |
| 107 |
|
mulcom |
|- ( ( ( 1 / 2 ) e. CC /\ ( abs ` ( F ` k ) ) e. CC ) -> ( ( 1 / 2 ) x. ( abs ` ( F ` k ) ) ) = ( ( abs ` ( F ` k ) ) x. ( 1 / 2 ) ) ) |
| 108 |
103 106 107
|
sylancr |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( 1 / 2 ) x. ( abs ` ( F ` k ) ) ) = ( ( abs ` ( F ` k ) ) x. ( 1 / 2 ) ) ) |
| 109 |
25 19
|
syl |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 110 |
109
|
fveq2d |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` ( F ` k ) ) = ( abs ` ( ( A ^ k ) / ( ! ` k ) ) ) ) |
| 111 |
|
eftabs |
|- ( ( A e. CC /\ k e. NN0 ) -> ( abs ` ( ( A ^ k ) / ( ! ` k ) ) ) = ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) ) |
| 112 |
25 111
|
syldan |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` ( ( A ^ k ) / ( ! ` k ) ) ) = ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) ) |
| 113 |
110 112
|
eqtrd |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` ( F ` k ) ) = ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) ) |
| 114 |
113
|
oveq1d |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( abs ` ( F ` k ) ) x. ( 1 / 2 ) ) = ( ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) x. ( 1 / 2 ) ) ) |
| 115 |
108 114
|
eqtrd |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( 1 / 2 ) x. ( abs ` ( F ` k ) ) ) = ( ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) x. ( 1 / 2 ) ) ) |
| 116 |
72 102 115
|
3brtr4d |
|- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` ( F ` ( k + 1 ) ) ) <_ ( ( 1 / 2 ) x. ( abs ` ( F ` k ) ) ) ) |
| 117 |
2 3 5 7 18 22 116
|
cvgrat |
|- ( A e. CC -> seq 0 ( + , F ) e. dom ~~> ) |