Step |
Hyp |
Ref |
Expression |
1 |
|
efcvg.1 |
|- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
2 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
3 |
|
0zd |
|- ( A e. CC -> 0 e. ZZ ) |
4 |
1
|
eftval |
|- ( k e. NN0 -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
5 |
4
|
adantl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
6 |
|
eftcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. CC ) |
7 |
1
|
efcllem |
|- ( A e. CC -> seq 0 ( + , F ) e. dom ~~> ) |
8 |
2 3 5 6 7
|
isumclim2 |
|- ( A e. CC -> seq 0 ( + , F ) ~~> sum_ k e. NN0 ( ( A ^ k ) / ( ! ` k ) ) ) |
9 |
|
efval |
|- ( A e. CC -> ( exp ` A ) = sum_ k e. NN0 ( ( A ^ k ) / ( ! ` k ) ) ) |
10 |
8 9
|
breqtrrd |
|- ( A e. CC -> seq 0 ( + , F ) ~~> ( exp ` A ) ) |