| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efcvgfsum.1 |
|- F = ( n e. NN0 |-> sum_ k e. ( 0 ... n ) ( ( A ^ k ) / ( ! ` k ) ) ) |
| 2 |
|
oveq2 |
|- ( n = j -> ( 0 ... n ) = ( 0 ... j ) ) |
| 3 |
2
|
sumeq1d |
|- ( n = j -> sum_ k e. ( 0 ... n ) ( ( A ^ k ) / ( ! ` k ) ) = sum_ k e. ( 0 ... j ) ( ( A ^ k ) / ( ! ` k ) ) ) |
| 4 |
|
sumex |
|- sum_ k e. ( 0 ... j ) ( ( A ^ k ) / ( ! ` k ) ) e. _V |
| 5 |
3 1 4
|
fvmpt |
|- ( j e. NN0 -> ( F ` j ) = sum_ k e. ( 0 ... j ) ( ( A ^ k ) / ( ! ` k ) ) ) |
| 6 |
5
|
adantl |
|- ( ( A e. CC /\ j e. NN0 ) -> ( F ` j ) = sum_ k e. ( 0 ... j ) ( ( A ^ k ) / ( ! ` k ) ) ) |
| 7 |
|
elfznn0 |
|- ( k e. ( 0 ... j ) -> k e. NN0 ) |
| 8 |
7
|
adantl |
|- ( ( ( A e. CC /\ j e. NN0 ) /\ k e. ( 0 ... j ) ) -> k e. NN0 ) |
| 9 |
|
eqid |
|- ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
| 10 |
9
|
eftval |
|- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 11 |
8 10
|
syl |
|- ( ( ( A e. CC /\ j e. NN0 ) /\ k e. ( 0 ... j ) ) -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 12 |
|
simpr |
|- ( ( A e. CC /\ j e. NN0 ) -> j e. NN0 ) |
| 13 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 14 |
12 13
|
eleqtrdi |
|- ( ( A e. CC /\ j e. NN0 ) -> j e. ( ZZ>= ` 0 ) ) |
| 15 |
|
simpll |
|- ( ( ( A e. CC /\ j e. NN0 ) /\ k e. ( 0 ... j ) ) -> A e. CC ) |
| 16 |
|
eftcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. CC ) |
| 17 |
15 8 16
|
syl2anc |
|- ( ( ( A e. CC /\ j e. NN0 ) /\ k e. ( 0 ... j ) ) -> ( ( A ^ k ) / ( ! ` k ) ) e. CC ) |
| 18 |
11 14 17
|
fsumser |
|- ( ( A e. CC /\ j e. NN0 ) -> sum_ k e. ( 0 ... j ) ( ( A ^ k ) / ( ! ` k ) ) = ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` j ) ) |
| 19 |
6 18
|
eqtrd |
|- ( ( A e. CC /\ j e. NN0 ) -> ( F ` j ) = ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` j ) ) |
| 20 |
19
|
ralrimiva |
|- ( A e. CC -> A. j e. NN0 ( F ` j ) = ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` j ) ) |
| 21 |
|
sumex |
|- sum_ k e. ( 0 ... n ) ( ( A ^ k ) / ( ! ` k ) ) e. _V |
| 22 |
21 1
|
fnmpti |
|- F Fn NN0 |
| 23 |
|
0z |
|- 0 e. ZZ |
| 24 |
|
seqfn |
|- ( 0 e. ZZ -> seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) Fn ( ZZ>= ` 0 ) ) |
| 25 |
23 24
|
ax-mp |
|- seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) Fn ( ZZ>= ` 0 ) |
| 26 |
13
|
fneq2i |
|- ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) Fn NN0 <-> seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) Fn ( ZZ>= ` 0 ) ) |
| 27 |
25 26
|
mpbir |
|- seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) Fn NN0 |
| 28 |
|
eqfnfv |
|- ( ( F Fn NN0 /\ seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) Fn NN0 ) -> ( F = seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) <-> A. j e. NN0 ( F ` j ) = ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` j ) ) ) |
| 29 |
22 27 28
|
mp2an |
|- ( F = seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) <-> A. j e. NN0 ( F ` j ) = ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` j ) ) |
| 30 |
20 29
|
sylibr |
|- ( A e. CC -> F = seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ) |
| 31 |
9
|
efcvg |
|- ( A e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ~~> ( exp ` A ) ) |
| 32 |
30 31
|
eqbrtrd |
|- ( A e. CC -> F ~~> ( exp ` A ) ) |