Step |
Hyp |
Ref |
Expression |
1 |
|
simpl1 |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A e. RR ) |
2 |
|
simpl2 |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> B e. RR ) |
3 |
|
simpl3 |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A < B ) |
4 |
|
reeff1o |
|- ( exp |` RR ) : RR -1-1-onto-> RR+ |
5 |
|
f1of |
|- ( ( exp |` RR ) : RR -1-1-onto-> RR+ -> ( exp |` RR ) : RR --> RR+ ) |
6 |
4 5
|
ax-mp |
|- ( exp |` RR ) : RR --> RR+ |
7 |
|
rpssre |
|- RR+ C_ RR |
8 |
|
fss |
|- ( ( ( exp |` RR ) : RR --> RR+ /\ RR+ C_ RR ) -> ( exp |` RR ) : RR --> RR ) |
9 |
6 7 8
|
mp2an |
|- ( exp |` RR ) : RR --> RR |
10 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
11 |
1 2 10
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( A [,] B ) C_ RR ) |
12 |
|
fssres2 |
|- ( ( ( exp |` RR ) : RR --> RR /\ ( A [,] B ) C_ RR ) -> ( exp |` ( A [,] B ) ) : ( A [,] B ) --> RR ) |
13 |
9 11 12
|
sylancr |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( exp |` ( A [,] B ) ) : ( A [,] B ) --> RR ) |
14 |
|
ax-resscn |
|- RR C_ CC |
15 |
11 14
|
sstrdi |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( A [,] B ) C_ CC ) |
16 |
|
efcn |
|- exp e. ( CC -cn-> CC ) |
17 |
|
rescncf |
|- ( ( A [,] B ) C_ CC -> ( exp e. ( CC -cn-> CC ) -> ( exp |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) ) |
18 |
15 16 17
|
mpisyl |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( exp |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
19 |
|
cncffvrn |
|- ( ( RR C_ CC /\ ( exp |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( ( exp |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) <-> ( exp |` ( A [,] B ) ) : ( A [,] B ) --> RR ) ) |
20 |
14 18 19
|
sylancr |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) <-> ( exp |` ( A [,] B ) ) : ( A [,] B ) --> RR ) ) |
21 |
13 20
|
mpbird |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( exp |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
22 |
|
reefiso |
|- ( exp |` RR ) Isom < , < ( RR , RR+ ) |
23 |
22
|
a1i |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( exp |` RR ) Isom < , < ( RR , RR+ ) ) |
24 |
|
ioossre |
|- ( A (,) B ) C_ RR |
25 |
24
|
a1i |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( A (,) B ) C_ RR ) |
26 |
|
eqidd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` RR ) " ( A (,) B ) ) = ( ( exp |` RR ) " ( A (,) B ) ) ) |
27 |
|
isores3 |
|- ( ( ( exp |` RR ) Isom < , < ( RR , RR+ ) /\ ( A (,) B ) C_ RR /\ ( ( exp |` RR ) " ( A (,) B ) ) = ( ( exp |` RR ) " ( A (,) B ) ) ) -> ( ( exp |` RR ) |` ( A (,) B ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) ) |
28 |
23 25 26 27
|
syl3anc |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` RR ) |` ( A (,) B ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) ) |
29 |
|
ssid |
|- RR C_ RR |
30 |
|
fss |
|- ( ( ( exp |` RR ) : RR --> RR /\ RR C_ CC ) -> ( exp |` RR ) : RR --> CC ) |
31 |
9 14 30
|
mp2an |
|- ( exp |` RR ) : RR --> CC |
32 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
33 |
32
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
34 |
32 33
|
dvres |
|- ( ( ( RR C_ CC /\ ( exp |` RR ) : RR --> CC ) /\ ( RR C_ RR /\ ( A [,] B ) C_ RR ) ) -> ( RR _D ( ( exp |` RR ) |` ( A [,] B ) ) ) = ( ( RR _D ( exp |` RR ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) |
35 |
14 31 34
|
mpanl12 |
|- ( ( RR C_ RR /\ ( A [,] B ) C_ RR ) -> ( RR _D ( ( exp |` RR ) |` ( A [,] B ) ) ) = ( ( RR _D ( exp |` RR ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) |
36 |
29 11 35
|
sylancr |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( ( exp |` RR ) |` ( A [,] B ) ) ) = ( ( RR _D ( exp |` RR ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) |
37 |
11
|
resabs1d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` RR ) |` ( A [,] B ) ) = ( exp |` ( A [,] B ) ) ) |
38 |
37
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( ( exp |` RR ) |` ( A [,] B ) ) ) = ( RR _D ( exp |` ( A [,] B ) ) ) ) |
39 |
|
reelprrecn |
|- RR e. { RR , CC } |
40 |
|
eff |
|- exp : CC --> CC |
41 |
|
ssid |
|- CC C_ CC |
42 |
|
dvef |
|- ( CC _D exp ) = exp |
43 |
42
|
dmeqi |
|- dom ( CC _D exp ) = dom exp |
44 |
40
|
fdmi |
|- dom exp = CC |
45 |
43 44
|
eqtri |
|- dom ( CC _D exp ) = CC |
46 |
14 45
|
sseqtrri |
|- RR C_ dom ( CC _D exp ) |
47 |
|
dvres3 |
|- ( ( ( RR e. { RR , CC } /\ exp : CC --> CC ) /\ ( CC C_ CC /\ RR C_ dom ( CC _D exp ) ) ) -> ( RR _D ( exp |` RR ) ) = ( ( CC _D exp ) |` RR ) ) |
48 |
39 40 41 46 47
|
mp4an |
|- ( RR _D ( exp |` RR ) ) = ( ( CC _D exp ) |` RR ) |
49 |
42
|
reseq1i |
|- ( ( CC _D exp ) |` RR ) = ( exp |` RR ) |
50 |
48 49
|
eqtri |
|- ( RR _D ( exp |` RR ) ) = ( exp |` RR ) |
51 |
50
|
a1i |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( exp |` RR ) ) = ( exp |` RR ) ) |
52 |
|
iccntr |
|- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
53 |
1 2 52
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
54 |
51 53
|
reseq12d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( RR _D ( exp |` RR ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) = ( ( exp |` RR ) |` ( A (,) B ) ) ) |
55 |
36 38 54
|
3eqtr3d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( exp |` ( A [,] B ) ) ) = ( ( exp |` RR ) |` ( A (,) B ) ) ) |
56 |
|
isoeq1 |
|- ( ( RR _D ( exp |` ( A [,] B ) ) ) = ( ( exp |` RR ) |` ( A (,) B ) ) -> ( ( RR _D ( exp |` ( A [,] B ) ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) <-> ( ( exp |` RR ) |` ( A (,) B ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) ) ) |
57 |
55 56
|
syl |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( RR _D ( exp |` ( A [,] B ) ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) <-> ( ( exp |` RR ) |` ( A (,) B ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) ) ) |
58 |
28 57
|
mpbird |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( exp |` ( A [,] B ) ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) ) |
59 |
|
simpr |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. ( 0 (,) 1 ) ) |
60 |
|
eqid |
|- ( ( T x. A ) + ( ( 1 - T ) x. B ) ) = ( ( T x. A ) + ( ( 1 - T ) x. B ) ) |
61 |
1 2 3 21 58 59 60
|
dvcvx |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` ( A [,] B ) ) ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) < ( ( T x. ( ( exp |` ( A [,] B ) ) ` A ) ) + ( ( 1 - T ) x. ( ( exp |` ( A [,] B ) ) ` B ) ) ) ) |
62 |
|
ax-1cn |
|- 1 e. CC |
63 |
|
ioossre |
|- ( 0 (,) 1 ) C_ RR |
64 |
63 59
|
sselid |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. RR ) |
65 |
64
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. CC ) |
66 |
|
nncan |
|- ( ( 1 e. CC /\ T e. CC ) -> ( 1 - ( 1 - T ) ) = T ) |
67 |
62 65 66
|
sylancr |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( 1 - ( 1 - T ) ) = T ) |
68 |
67
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( 1 - ( 1 - T ) ) x. A ) = ( T x. A ) ) |
69 |
68
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( ( 1 - ( 1 - T ) ) x. A ) + ( ( 1 - T ) x. B ) ) = ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) |
70 |
|
ioossicc |
|- ( 0 (,) 1 ) C_ ( 0 [,] 1 ) |
71 |
70 59
|
sselid |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. ( 0 [,] 1 ) ) |
72 |
|
iirev |
|- ( T e. ( 0 [,] 1 ) -> ( 1 - T ) e. ( 0 [,] 1 ) ) |
73 |
71 72
|
syl |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( 1 - T ) e. ( 0 [,] 1 ) ) |
74 |
|
lincmb01cmp |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( 1 - T ) e. ( 0 [,] 1 ) ) -> ( ( ( 1 - ( 1 - T ) ) x. A ) + ( ( 1 - T ) x. B ) ) e. ( A [,] B ) ) |
75 |
73 74
|
syldan |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( ( 1 - ( 1 - T ) ) x. A ) + ( ( 1 - T ) x. B ) ) e. ( A [,] B ) ) |
76 |
69 75
|
eqeltrrd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. ( A [,] B ) ) |
77 |
76
|
fvresd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` ( A [,] B ) ) ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) = ( exp ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) |
78 |
1
|
rexrd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A e. RR* ) |
79 |
2
|
rexrd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> B e. RR* ) |
80 |
1 2 3
|
ltled |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A <_ B ) |
81 |
|
lbicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
82 |
78 79 80 81
|
syl3anc |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A e. ( A [,] B ) ) |
83 |
82
|
fvresd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` ( A [,] B ) ) ` A ) = ( exp ` A ) ) |
84 |
83
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( T x. ( ( exp |` ( A [,] B ) ) ` A ) ) = ( T x. ( exp ` A ) ) ) |
85 |
|
ubicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |
86 |
78 79 80 85
|
syl3anc |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> B e. ( A [,] B ) ) |
87 |
86
|
fvresd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` ( A [,] B ) ) ` B ) = ( exp ` B ) ) |
88 |
87
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( 1 - T ) x. ( ( exp |` ( A [,] B ) ) ` B ) ) = ( ( 1 - T ) x. ( exp ` B ) ) ) |
89 |
84 88
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( T x. ( ( exp |` ( A [,] B ) ) ` A ) ) + ( ( 1 - T ) x. ( ( exp |` ( A [,] B ) ) ` B ) ) ) = ( ( T x. ( exp ` A ) ) + ( ( 1 - T ) x. ( exp ` B ) ) ) ) |
90 |
61 77 89
|
3brtr3d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( exp ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) < ( ( T x. ( exp ` A ) ) + ( ( 1 - T ) x. ( exp ` B ) ) ) ) |