| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl1 |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A e. RR ) |
| 2 |
|
simpl2 |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> B e. RR ) |
| 3 |
|
simpl3 |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A < B ) |
| 4 |
|
reeff1o |
|- ( exp |` RR ) : RR -1-1-onto-> RR+ |
| 5 |
|
f1of |
|- ( ( exp |` RR ) : RR -1-1-onto-> RR+ -> ( exp |` RR ) : RR --> RR+ ) |
| 6 |
4 5
|
ax-mp |
|- ( exp |` RR ) : RR --> RR+ |
| 7 |
|
rpssre |
|- RR+ C_ RR |
| 8 |
|
fss |
|- ( ( ( exp |` RR ) : RR --> RR+ /\ RR+ C_ RR ) -> ( exp |` RR ) : RR --> RR ) |
| 9 |
6 7 8
|
mp2an |
|- ( exp |` RR ) : RR --> RR |
| 10 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
| 11 |
1 2 10
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( A [,] B ) C_ RR ) |
| 12 |
|
fssres2 |
|- ( ( ( exp |` RR ) : RR --> RR /\ ( A [,] B ) C_ RR ) -> ( exp |` ( A [,] B ) ) : ( A [,] B ) --> RR ) |
| 13 |
9 11 12
|
sylancr |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( exp |` ( A [,] B ) ) : ( A [,] B ) --> RR ) |
| 14 |
|
ax-resscn |
|- RR C_ CC |
| 15 |
11 14
|
sstrdi |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( A [,] B ) C_ CC ) |
| 16 |
|
efcn |
|- exp e. ( CC -cn-> CC ) |
| 17 |
|
rescncf |
|- ( ( A [,] B ) C_ CC -> ( exp e. ( CC -cn-> CC ) -> ( exp |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) ) |
| 18 |
15 16 17
|
mpisyl |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( exp |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 19 |
|
cncfcdm |
|- ( ( RR C_ CC /\ ( exp |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( ( exp |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) <-> ( exp |` ( A [,] B ) ) : ( A [,] B ) --> RR ) ) |
| 20 |
14 18 19
|
sylancr |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) <-> ( exp |` ( A [,] B ) ) : ( A [,] B ) --> RR ) ) |
| 21 |
13 20
|
mpbird |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( exp |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 22 |
|
reefiso |
|- ( exp |` RR ) Isom < , < ( RR , RR+ ) |
| 23 |
22
|
a1i |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( exp |` RR ) Isom < , < ( RR , RR+ ) ) |
| 24 |
|
ioossre |
|- ( A (,) B ) C_ RR |
| 25 |
24
|
a1i |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( A (,) B ) C_ RR ) |
| 26 |
|
eqidd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` RR ) " ( A (,) B ) ) = ( ( exp |` RR ) " ( A (,) B ) ) ) |
| 27 |
|
isores3 |
|- ( ( ( exp |` RR ) Isom < , < ( RR , RR+ ) /\ ( A (,) B ) C_ RR /\ ( ( exp |` RR ) " ( A (,) B ) ) = ( ( exp |` RR ) " ( A (,) B ) ) ) -> ( ( exp |` RR ) |` ( A (,) B ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) ) |
| 28 |
23 25 26 27
|
syl3anc |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` RR ) |` ( A (,) B ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) ) |
| 29 |
|
ssid |
|- RR C_ RR |
| 30 |
|
fss |
|- ( ( ( exp |` RR ) : RR --> RR /\ RR C_ CC ) -> ( exp |` RR ) : RR --> CC ) |
| 31 |
9 14 30
|
mp2an |
|- ( exp |` RR ) : RR --> CC |
| 32 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 33 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 34 |
32 33
|
dvres |
|- ( ( ( RR C_ CC /\ ( exp |` RR ) : RR --> CC ) /\ ( RR C_ RR /\ ( A [,] B ) C_ RR ) ) -> ( RR _D ( ( exp |` RR ) |` ( A [,] B ) ) ) = ( ( RR _D ( exp |` RR ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) |
| 35 |
14 31 34
|
mpanl12 |
|- ( ( RR C_ RR /\ ( A [,] B ) C_ RR ) -> ( RR _D ( ( exp |` RR ) |` ( A [,] B ) ) ) = ( ( RR _D ( exp |` RR ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) |
| 36 |
29 11 35
|
sylancr |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( ( exp |` RR ) |` ( A [,] B ) ) ) = ( ( RR _D ( exp |` RR ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) |
| 37 |
11
|
resabs1d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` RR ) |` ( A [,] B ) ) = ( exp |` ( A [,] B ) ) ) |
| 38 |
37
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( ( exp |` RR ) |` ( A [,] B ) ) ) = ( RR _D ( exp |` ( A [,] B ) ) ) ) |
| 39 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 40 |
|
eff |
|- exp : CC --> CC |
| 41 |
|
ssid |
|- CC C_ CC |
| 42 |
|
dvef |
|- ( CC _D exp ) = exp |
| 43 |
42
|
dmeqi |
|- dom ( CC _D exp ) = dom exp |
| 44 |
40
|
fdmi |
|- dom exp = CC |
| 45 |
43 44
|
eqtri |
|- dom ( CC _D exp ) = CC |
| 46 |
14 45
|
sseqtrri |
|- RR C_ dom ( CC _D exp ) |
| 47 |
|
dvres3 |
|- ( ( ( RR e. { RR , CC } /\ exp : CC --> CC ) /\ ( CC C_ CC /\ RR C_ dom ( CC _D exp ) ) ) -> ( RR _D ( exp |` RR ) ) = ( ( CC _D exp ) |` RR ) ) |
| 48 |
39 40 41 46 47
|
mp4an |
|- ( RR _D ( exp |` RR ) ) = ( ( CC _D exp ) |` RR ) |
| 49 |
42
|
reseq1i |
|- ( ( CC _D exp ) |` RR ) = ( exp |` RR ) |
| 50 |
48 49
|
eqtri |
|- ( RR _D ( exp |` RR ) ) = ( exp |` RR ) |
| 51 |
50
|
a1i |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( exp |` RR ) ) = ( exp |` RR ) ) |
| 52 |
|
iccntr |
|- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
| 53 |
1 2 52
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
| 54 |
51 53
|
reseq12d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( RR _D ( exp |` RR ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) = ( ( exp |` RR ) |` ( A (,) B ) ) ) |
| 55 |
36 38 54
|
3eqtr3d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( exp |` ( A [,] B ) ) ) = ( ( exp |` RR ) |` ( A (,) B ) ) ) |
| 56 |
|
isoeq1 |
|- ( ( RR _D ( exp |` ( A [,] B ) ) ) = ( ( exp |` RR ) |` ( A (,) B ) ) -> ( ( RR _D ( exp |` ( A [,] B ) ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) <-> ( ( exp |` RR ) |` ( A (,) B ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) ) ) |
| 57 |
55 56
|
syl |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( RR _D ( exp |` ( A [,] B ) ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) <-> ( ( exp |` RR ) |` ( A (,) B ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) ) ) |
| 58 |
28 57
|
mpbird |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( exp |` ( A [,] B ) ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) ) |
| 59 |
|
simpr |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. ( 0 (,) 1 ) ) |
| 60 |
|
eqid |
|- ( ( T x. A ) + ( ( 1 - T ) x. B ) ) = ( ( T x. A ) + ( ( 1 - T ) x. B ) ) |
| 61 |
1 2 3 21 58 59 60
|
dvcvx |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` ( A [,] B ) ) ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) < ( ( T x. ( ( exp |` ( A [,] B ) ) ` A ) ) + ( ( 1 - T ) x. ( ( exp |` ( A [,] B ) ) ` B ) ) ) ) |
| 62 |
|
ax-1cn |
|- 1 e. CC |
| 63 |
|
ioossre |
|- ( 0 (,) 1 ) C_ RR |
| 64 |
63 59
|
sselid |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. RR ) |
| 65 |
64
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. CC ) |
| 66 |
|
nncan |
|- ( ( 1 e. CC /\ T e. CC ) -> ( 1 - ( 1 - T ) ) = T ) |
| 67 |
62 65 66
|
sylancr |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( 1 - ( 1 - T ) ) = T ) |
| 68 |
67
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( 1 - ( 1 - T ) ) x. A ) = ( T x. A ) ) |
| 69 |
68
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( ( 1 - ( 1 - T ) ) x. A ) + ( ( 1 - T ) x. B ) ) = ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) |
| 70 |
|
ioossicc |
|- ( 0 (,) 1 ) C_ ( 0 [,] 1 ) |
| 71 |
70 59
|
sselid |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. ( 0 [,] 1 ) ) |
| 72 |
|
iirev |
|- ( T e. ( 0 [,] 1 ) -> ( 1 - T ) e. ( 0 [,] 1 ) ) |
| 73 |
71 72
|
syl |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( 1 - T ) e. ( 0 [,] 1 ) ) |
| 74 |
|
lincmb01cmp |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( 1 - T ) e. ( 0 [,] 1 ) ) -> ( ( ( 1 - ( 1 - T ) ) x. A ) + ( ( 1 - T ) x. B ) ) e. ( A [,] B ) ) |
| 75 |
73 74
|
syldan |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( ( 1 - ( 1 - T ) ) x. A ) + ( ( 1 - T ) x. B ) ) e. ( A [,] B ) ) |
| 76 |
69 75
|
eqeltrrd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. ( A [,] B ) ) |
| 77 |
76
|
fvresd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` ( A [,] B ) ) ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) = ( exp ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) |
| 78 |
1
|
rexrd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A e. RR* ) |
| 79 |
2
|
rexrd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> B e. RR* ) |
| 80 |
1 2 3
|
ltled |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A <_ B ) |
| 81 |
|
lbicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
| 82 |
78 79 80 81
|
syl3anc |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A e. ( A [,] B ) ) |
| 83 |
82
|
fvresd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` ( A [,] B ) ) ` A ) = ( exp ` A ) ) |
| 84 |
83
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( T x. ( ( exp |` ( A [,] B ) ) ` A ) ) = ( T x. ( exp ` A ) ) ) |
| 85 |
|
ubicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |
| 86 |
78 79 80 85
|
syl3anc |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> B e. ( A [,] B ) ) |
| 87 |
86
|
fvresd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` ( A [,] B ) ) ` B ) = ( exp ` B ) ) |
| 88 |
87
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( 1 - T ) x. ( ( exp |` ( A [,] B ) ) ` B ) ) = ( ( 1 - T ) x. ( exp ` B ) ) ) |
| 89 |
84 88
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( T x. ( ( exp |` ( A [,] B ) ) ` A ) ) + ( ( 1 - T ) x. ( ( exp |` ( A [,] B ) ) ` B ) ) ) = ( ( T x. ( exp ` A ) ) + ( ( 1 - T ) x. ( exp ` B ) ) ) ) |
| 90 |
61 77 89
|
3brtr3d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( exp ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) < ( ( T x. ( exp ` A ) ) + ( ( 1 - T ) x. ( exp ` B ) ) ) ) |