Metamath Proof Explorer


Theorem efcvx

Description: The exponential function on the reals is a strictly convex function. (Contributed by Mario Carneiro, 20-Jun-2015)

Ref Expression
Assertion efcvx
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( exp ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) < ( ( T x. ( exp ` A ) ) + ( ( 1 - T ) x. ( exp ` B ) ) ) )

Proof

Step Hyp Ref Expression
1 simpl1
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A e. RR )
2 simpl2
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> B e. RR )
3 simpl3
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A < B )
4 reeff1o
 |-  ( exp |` RR ) : RR -1-1-onto-> RR+
5 f1of
 |-  ( ( exp |` RR ) : RR -1-1-onto-> RR+ -> ( exp |` RR ) : RR --> RR+ )
6 4 5 ax-mp
 |-  ( exp |` RR ) : RR --> RR+
7 rpssre
 |-  RR+ C_ RR
8 fss
 |-  ( ( ( exp |` RR ) : RR --> RR+ /\ RR+ C_ RR ) -> ( exp |` RR ) : RR --> RR )
9 6 7 8 mp2an
 |-  ( exp |` RR ) : RR --> RR
10 iccssre
 |-  ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR )
11 1 2 10 syl2anc
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( A [,] B ) C_ RR )
12 fssres2
 |-  ( ( ( exp |` RR ) : RR --> RR /\ ( A [,] B ) C_ RR ) -> ( exp |` ( A [,] B ) ) : ( A [,] B ) --> RR )
13 9 11 12 sylancr
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( exp |` ( A [,] B ) ) : ( A [,] B ) --> RR )
14 ax-resscn
 |-  RR C_ CC
15 11 14 sstrdi
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( A [,] B ) C_ CC )
16 efcn
 |-  exp e. ( CC -cn-> CC )
17 rescncf
 |-  ( ( A [,] B ) C_ CC -> ( exp e. ( CC -cn-> CC ) -> ( exp |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) )
18 15 16 17 mpisyl
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( exp |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) )
19 cncffvrn
 |-  ( ( RR C_ CC /\ ( exp |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( ( exp |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) <-> ( exp |` ( A [,] B ) ) : ( A [,] B ) --> RR ) )
20 14 18 19 sylancr
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) <-> ( exp |` ( A [,] B ) ) : ( A [,] B ) --> RR ) )
21 13 20 mpbird
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( exp |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) )
22 reefiso
 |-  ( exp |` RR ) Isom < , < ( RR , RR+ )
23 22 a1i
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( exp |` RR ) Isom < , < ( RR , RR+ ) )
24 ioossre
 |-  ( A (,) B ) C_ RR
25 24 a1i
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( A (,) B ) C_ RR )
26 eqidd
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` RR ) " ( A (,) B ) ) = ( ( exp |` RR ) " ( A (,) B ) ) )
27 isores3
 |-  ( ( ( exp |` RR ) Isom < , < ( RR , RR+ ) /\ ( A (,) B ) C_ RR /\ ( ( exp |` RR ) " ( A (,) B ) ) = ( ( exp |` RR ) " ( A (,) B ) ) ) -> ( ( exp |` RR ) |` ( A (,) B ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) )
28 23 25 26 27 syl3anc
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` RR ) |` ( A (,) B ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) )
29 ssid
 |-  RR C_ RR
30 fss
 |-  ( ( ( exp |` RR ) : RR --> RR /\ RR C_ CC ) -> ( exp |` RR ) : RR --> CC )
31 9 14 30 mp2an
 |-  ( exp |` RR ) : RR --> CC
32 eqid
 |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld )
33 32 tgioo2
 |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR )
34 32 33 dvres
 |-  ( ( ( RR C_ CC /\ ( exp |` RR ) : RR --> CC ) /\ ( RR C_ RR /\ ( A [,] B ) C_ RR ) ) -> ( RR _D ( ( exp |` RR ) |` ( A [,] B ) ) ) = ( ( RR _D ( exp |` RR ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) )
35 14 31 34 mpanl12
 |-  ( ( RR C_ RR /\ ( A [,] B ) C_ RR ) -> ( RR _D ( ( exp |` RR ) |` ( A [,] B ) ) ) = ( ( RR _D ( exp |` RR ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) )
36 29 11 35 sylancr
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( ( exp |` RR ) |` ( A [,] B ) ) ) = ( ( RR _D ( exp |` RR ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) )
37 11 resabs1d
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` RR ) |` ( A [,] B ) ) = ( exp |` ( A [,] B ) ) )
38 37 oveq2d
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( ( exp |` RR ) |` ( A [,] B ) ) ) = ( RR _D ( exp |` ( A [,] B ) ) ) )
39 reelprrecn
 |-  RR e. { RR , CC }
40 eff
 |-  exp : CC --> CC
41 ssid
 |-  CC C_ CC
42 dvef
 |-  ( CC _D exp ) = exp
43 42 dmeqi
 |-  dom ( CC _D exp ) = dom exp
44 40 fdmi
 |-  dom exp = CC
45 43 44 eqtri
 |-  dom ( CC _D exp ) = CC
46 14 45 sseqtrri
 |-  RR C_ dom ( CC _D exp )
47 dvres3
 |-  ( ( ( RR e. { RR , CC } /\ exp : CC --> CC ) /\ ( CC C_ CC /\ RR C_ dom ( CC _D exp ) ) ) -> ( RR _D ( exp |` RR ) ) = ( ( CC _D exp ) |` RR ) )
48 39 40 41 46 47 mp4an
 |-  ( RR _D ( exp |` RR ) ) = ( ( CC _D exp ) |` RR )
49 42 reseq1i
 |-  ( ( CC _D exp ) |` RR ) = ( exp |` RR )
50 48 49 eqtri
 |-  ( RR _D ( exp |` RR ) ) = ( exp |` RR )
51 50 a1i
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( exp |` RR ) ) = ( exp |` RR ) )
52 iccntr
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) )
53 1 2 52 syl2anc
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) )
54 51 53 reseq12d
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( RR _D ( exp |` RR ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) = ( ( exp |` RR ) |` ( A (,) B ) ) )
55 36 38 54 3eqtr3d
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( exp |` ( A [,] B ) ) ) = ( ( exp |` RR ) |` ( A (,) B ) ) )
56 isoeq1
 |-  ( ( RR _D ( exp |` ( A [,] B ) ) ) = ( ( exp |` RR ) |` ( A (,) B ) ) -> ( ( RR _D ( exp |` ( A [,] B ) ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) <-> ( ( exp |` RR ) |` ( A (,) B ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) ) )
57 55 56 syl
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( RR _D ( exp |` ( A [,] B ) ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) <-> ( ( exp |` RR ) |` ( A (,) B ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) ) )
58 28 57 mpbird
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( exp |` ( A [,] B ) ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) )
59 simpr
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. ( 0 (,) 1 ) )
60 eqid
 |-  ( ( T x. A ) + ( ( 1 - T ) x. B ) ) = ( ( T x. A ) + ( ( 1 - T ) x. B ) )
61 1 2 3 21 58 59 60 dvcvx
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` ( A [,] B ) ) ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) < ( ( T x. ( ( exp |` ( A [,] B ) ) ` A ) ) + ( ( 1 - T ) x. ( ( exp |` ( A [,] B ) ) ` B ) ) ) )
62 ax-1cn
 |-  1 e. CC
63 ioossre
 |-  ( 0 (,) 1 ) C_ RR
64 63 59 sselid
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. RR )
65 64 recnd
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. CC )
66 nncan
 |-  ( ( 1 e. CC /\ T e. CC ) -> ( 1 - ( 1 - T ) ) = T )
67 62 65 66 sylancr
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( 1 - ( 1 - T ) ) = T )
68 67 oveq1d
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( 1 - ( 1 - T ) ) x. A ) = ( T x. A ) )
69 68 oveq1d
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( ( 1 - ( 1 - T ) ) x. A ) + ( ( 1 - T ) x. B ) ) = ( ( T x. A ) + ( ( 1 - T ) x. B ) ) )
70 ioossicc
 |-  ( 0 (,) 1 ) C_ ( 0 [,] 1 )
71 70 59 sselid
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. ( 0 [,] 1 ) )
72 iirev
 |-  ( T e. ( 0 [,] 1 ) -> ( 1 - T ) e. ( 0 [,] 1 ) )
73 71 72 syl
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( 1 - T ) e. ( 0 [,] 1 ) )
74 lincmb01cmp
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( 1 - T ) e. ( 0 [,] 1 ) ) -> ( ( ( 1 - ( 1 - T ) ) x. A ) + ( ( 1 - T ) x. B ) ) e. ( A [,] B ) )
75 73 74 syldan
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( ( 1 - ( 1 - T ) ) x. A ) + ( ( 1 - T ) x. B ) ) e. ( A [,] B ) )
76 69 75 eqeltrrd
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. ( A [,] B ) )
77 76 fvresd
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` ( A [,] B ) ) ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) = ( exp ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) )
78 1 rexrd
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A e. RR* )
79 2 rexrd
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> B e. RR* )
80 1 2 3 ltled
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A <_ B )
81 lbicc2
 |-  ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) )
82 78 79 80 81 syl3anc
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A e. ( A [,] B ) )
83 82 fvresd
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` ( A [,] B ) ) ` A ) = ( exp ` A ) )
84 83 oveq2d
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( T x. ( ( exp |` ( A [,] B ) ) ` A ) ) = ( T x. ( exp ` A ) ) )
85 ubicc2
 |-  ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) )
86 78 79 80 85 syl3anc
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> B e. ( A [,] B ) )
87 86 fvresd
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` ( A [,] B ) ) ` B ) = ( exp ` B ) )
88 87 oveq2d
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( 1 - T ) x. ( ( exp |` ( A [,] B ) ) ` B ) ) = ( ( 1 - T ) x. ( exp ` B ) ) )
89 84 88 oveq12d
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( T x. ( ( exp |` ( A [,] B ) ) ` A ) ) + ( ( 1 - T ) x. ( ( exp |` ( A [,] B ) ) ` B ) ) ) = ( ( T x. ( exp ` A ) ) + ( ( 1 - T ) x. ( exp ` B ) ) ) )
90 61 77 89 3brtr3d
 |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( exp ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) < ( ( T x. ( exp ` A ) ) + ( ( 1 - T ) x. ( exp ` B ) ) ) )