| Step | Hyp | Ref | Expression | 
						
							| 1 |  | halfcl |  |-  ( A e. CC -> ( A / 2 ) e. CC ) | 
						
							| 2 |  | ax-icn |  |-  _i e. CC | 
						
							| 3 |  | ine0 |  |-  _i =/= 0 | 
						
							| 4 |  | divcl |  |-  ( ( ( A / 2 ) e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( ( A / 2 ) / _i ) e. CC ) | 
						
							| 5 | 2 3 4 | mp3an23 |  |-  ( ( A / 2 ) e. CC -> ( ( A / 2 ) / _i ) e. CC ) | 
						
							| 6 | 1 5 | syl |  |-  ( A e. CC -> ( ( A / 2 ) / _i ) e. CC ) | 
						
							| 7 |  | sineq0 |  |-  ( ( ( A / 2 ) / _i ) e. CC -> ( ( sin ` ( ( A / 2 ) / _i ) ) = 0 <-> ( ( ( A / 2 ) / _i ) / _pi ) e. ZZ ) ) | 
						
							| 8 | 6 7 | syl |  |-  ( A e. CC -> ( ( sin ` ( ( A / 2 ) / _i ) ) = 0 <-> ( ( ( A / 2 ) / _i ) / _pi ) e. ZZ ) ) | 
						
							| 9 |  | sinval |  |-  ( ( ( A / 2 ) / _i ) e. CC -> ( sin ` ( ( A / 2 ) / _i ) ) = ( ( ( exp ` ( _i x. ( ( A / 2 ) / _i ) ) ) - ( exp ` ( -u _i x. ( ( A / 2 ) / _i ) ) ) ) / ( 2 x. _i ) ) ) | 
						
							| 10 | 6 9 | syl |  |-  ( A e. CC -> ( sin ` ( ( A / 2 ) / _i ) ) = ( ( ( exp ` ( _i x. ( ( A / 2 ) / _i ) ) ) - ( exp ` ( -u _i x. ( ( A / 2 ) / _i ) ) ) ) / ( 2 x. _i ) ) ) | 
						
							| 11 |  | divcan2 |  |-  ( ( ( A / 2 ) e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( _i x. ( ( A / 2 ) / _i ) ) = ( A / 2 ) ) | 
						
							| 12 | 2 3 11 | mp3an23 |  |-  ( ( A / 2 ) e. CC -> ( _i x. ( ( A / 2 ) / _i ) ) = ( A / 2 ) ) | 
						
							| 13 | 1 12 | syl |  |-  ( A e. CC -> ( _i x. ( ( A / 2 ) / _i ) ) = ( A / 2 ) ) | 
						
							| 14 | 13 | fveq2d |  |-  ( A e. CC -> ( exp ` ( _i x. ( ( A / 2 ) / _i ) ) ) = ( exp ` ( A / 2 ) ) ) | 
						
							| 15 |  | mulneg1 |  |-  ( ( _i e. CC /\ ( ( A / 2 ) / _i ) e. CC ) -> ( -u _i x. ( ( A / 2 ) / _i ) ) = -u ( _i x. ( ( A / 2 ) / _i ) ) ) | 
						
							| 16 | 2 6 15 | sylancr |  |-  ( A e. CC -> ( -u _i x. ( ( A / 2 ) / _i ) ) = -u ( _i x. ( ( A / 2 ) / _i ) ) ) | 
						
							| 17 | 13 | negeqd |  |-  ( A e. CC -> -u ( _i x. ( ( A / 2 ) / _i ) ) = -u ( A / 2 ) ) | 
						
							| 18 | 16 17 | eqtrd |  |-  ( A e. CC -> ( -u _i x. ( ( A / 2 ) / _i ) ) = -u ( A / 2 ) ) | 
						
							| 19 | 18 | fveq2d |  |-  ( A e. CC -> ( exp ` ( -u _i x. ( ( A / 2 ) / _i ) ) ) = ( exp ` -u ( A / 2 ) ) ) | 
						
							| 20 | 14 19 | oveq12d |  |-  ( A e. CC -> ( ( exp ` ( _i x. ( ( A / 2 ) / _i ) ) ) - ( exp ` ( -u _i x. ( ( A / 2 ) / _i ) ) ) ) = ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) ) | 
						
							| 21 | 20 | oveq1d |  |-  ( A e. CC -> ( ( ( exp ` ( _i x. ( ( A / 2 ) / _i ) ) ) - ( exp ` ( -u _i x. ( ( A / 2 ) / _i ) ) ) ) / ( 2 x. _i ) ) = ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( 2 x. _i ) ) ) | 
						
							| 22 | 10 21 | eqtrd |  |-  ( A e. CC -> ( sin ` ( ( A / 2 ) / _i ) ) = ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( 2 x. _i ) ) ) | 
						
							| 23 | 22 | eqeq1d |  |-  ( A e. CC -> ( ( sin ` ( ( A / 2 ) / _i ) ) = 0 <-> ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( 2 x. _i ) ) = 0 ) ) | 
						
							| 24 |  | efcl |  |-  ( ( A / 2 ) e. CC -> ( exp ` ( A / 2 ) ) e. CC ) | 
						
							| 25 | 1 24 | syl |  |-  ( A e. CC -> ( exp ` ( A / 2 ) ) e. CC ) | 
						
							| 26 | 1 | negcld |  |-  ( A e. CC -> -u ( A / 2 ) e. CC ) | 
						
							| 27 |  | efcl |  |-  ( -u ( A / 2 ) e. CC -> ( exp ` -u ( A / 2 ) ) e. CC ) | 
						
							| 28 | 26 27 | syl |  |-  ( A e. CC -> ( exp ` -u ( A / 2 ) ) e. CC ) | 
						
							| 29 | 25 28 | subcld |  |-  ( A e. CC -> ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) e. CC ) | 
						
							| 30 |  | 2cn |  |-  2 e. CC | 
						
							| 31 | 30 2 | mulcli |  |-  ( 2 x. _i ) e. CC | 
						
							| 32 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 33 | 30 2 32 3 | mulne0i |  |-  ( 2 x. _i ) =/= 0 | 
						
							| 34 |  | diveq0 |  |-  ( ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) e. CC /\ ( 2 x. _i ) e. CC /\ ( 2 x. _i ) =/= 0 ) -> ( ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( 2 x. _i ) ) = 0 <-> ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) = 0 ) ) | 
						
							| 35 | 31 33 34 | mp3an23 |  |-  ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) e. CC -> ( ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( 2 x. _i ) ) = 0 <-> ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) = 0 ) ) | 
						
							| 36 | 29 35 | syl |  |-  ( A e. CC -> ( ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( 2 x. _i ) ) = 0 <-> ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) = 0 ) ) | 
						
							| 37 |  | efne0 |  |-  ( -u ( A / 2 ) e. CC -> ( exp ` -u ( A / 2 ) ) =/= 0 ) | 
						
							| 38 | 26 37 | syl |  |-  ( A e. CC -> ( exp ` -u ( A / 2 ) ) =/= 0 ) | 
						
							| 39 | 25 28 28 38 | divsubdird |  |-  ( A e. CC -> ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( exp ` -u ( A / 2 ) ) ) = ( ( ( exp ` ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) - ( ( exp ` -u ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) ) ) | 
						
							| 40 |  | efsub |  |-  ( ( ( A / 2 ) e. CC /\ -u ( A / 2 ) e. CC ) -> ( exp ` ( ( A / 2 ) - -u ( A / 2 ) ) ) = ( ( exp ` ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) ) | 
						
							| 41 | 1 26 40 | syl2anc |  |-  ( A e. CC -> ( exp ` ( ( A / 2 ) - -u ( A / 2 ) ) ) = ( ( exp ` ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) ) | 
						
							| 42 | 1 1 | subnegd |  |-  ( A e. CC -> ( ( A / 2 ) - -u ( A / 2 ) ) = ( ( A / 2 ) + ( A / 2 ) ) ) | 
						
							| 43 |  | 2halves |  |-  ( A e. CC -> ( ( A / 2 ) + ( A / 2 ) ) = A ) | 
						
							| 44 | 42 43 | eqtrd |  |-  ( A e. CC -> ( ( A / 2 ) - -u ( A / 2 ) ) = A ) | 
						
							| 45 | 44 | fveq2d |  |-  ( A e. CC -> ( exp ` ( ( A / 2 ) - -u ( A / 2 ) ) ) = ( exp ` A ) ) | 
						
							| 46 | 41 45 | eqtr3d |  |-  ( A e. CC -> ( ( exp ` ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) = ( exp ` A ) ) | 
						
							| 47 | 28 38 | dividd |  |-  ( A e. CC -> ( ( exp ` -u ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) = 1 ) | 
						
							| 48 | 46 47 | oveq12d |  |-  ( A e. CC -> ( ( ( exp ` ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) - ( ( exp ` -u ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) ) = ( ( exp ` A ) - 1 ) ) | 
						
							| 49 | 39 48 | eqtrd |  |-  ( A e. CC -> ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( exp ` -u ( A / 2 ) ) ) = ( ( exp ` A ) - 1 ) ) | 
						
							| 50 | 49 | eqeq1d |  |-  ( A e. CC -> ( ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( exp ` -u ( A / 2 ) ) ) = 0 <-> ( ( exp ` A ) - 1 ) = 0 ) ) | 
						
							| 51 | 29 28 38 | diveq0ad |  |-  ( A e. CC -> ( ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( exp ` -u ( A / 2 ) ) ) = 0 <-> ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) = 0 ) ) | 
						
							| 52 |  | efcl |  |-  ( A e. CC -> ( exp ` A ) e. CC ) | 
						
							| 53 |  | ax-1cn |  |-  1 e. CC | 
						
							| 54 |  | subeq0 |  |-  ( ( ( exp ` A ) e. CC /\ 1 e. CC ) -> ( ( ( exp ` A ) - 1 ) = 0 <-> ( exp ` A ) = 1 ) ) | 
						
							| 55 | 52 53 54 | sylancl |  |-  ( A e. CC -> ( ( ( exp ` A ) - 1 ) = 0 <-> ( exp ` A ) = 1 ) ) | 
						
							| 56 | 50 51 55 | 3bitr3d |  |-  ( A e. CC -> ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) = 0 <-> ( exp ` A ) = 1 ) ) | 
						
							| 57 | 23 36 56 | 3bitrd |  |-  ( A e. CC -> ( ( sin ` ( ( A / 2 ) / _i ) ) = 0 <-> ( exp ` A ) = 1 ) ) | 
						
							| 58 |  | 2cnne0 |  |-  ( 2 e. CC /\ 2 =/= 0 ) | 
						
							| 59 | 2 3 | pm3.2i |  |-  ( _i e. CC /\ _i =/= 0 ) | 
						
							| 60 |  | divdiv32 |  |-  ( ( A e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( _i e. CC /\ _i =/= 0 ) ) -> ( ( A / 2 ) / _i ) = ( ( A / _i ) / 2 ) ) | 
						
							| 61 | 58 59 60 | mp3an23 |  |-  ( A e. CC -> ( ( A / 2 ) / _i ) = ( ( A / _i ) / 2 ) ) | 
						
							| 62 | 61 | oveq1d |  |-  ( A e. CC -> ( ( ( A / 2 ) / _i ) / _pi ) = ( ( ( A / _i ) / 2 ) / _pi ) ) | 
						
							| 63 |  | divcl |  |-  ( ( A e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( A / _i ) e. CC ) | 
						
							| 64 | 2 3 63 | mp3an23 |  |-  ( A e. CC -> ( A / _i ) e. CC ) | 
						
							| 65 |  | picn |  |-  _pi e. CC | 
						
							| 66 |  | pire |  |-  _pi e. RR | 
						
							| 67 |  | pipos |  |-  0 < _pi | 
						
							| 68 | 66 67 | gt0ne0ii |  |-  _pi =/= 0 | 
						
							| 69 | 65 68 | pm3.2i |  |-  ( _pi e. CC /\ _pi =/= 0 ) | 
						
							| 70 |  | divdiv1 |  |-  ( ( ( A / _i ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( _pi e. CC /\ _pi =/= 0 ) ) -> ( ( ( A / _i ) / 2 ) / _pi ) = ( ( A / _i ) / ( 2 x. _pi ) ) ) | 
						
							| 71 | 58 69 70 | mp3an23 |  |-  ( ( A / _i ) e. CC -> ( ( ( A / _i ) / 2 ) / _pi ) = ( ( A / _i ) / ( 2 x. _pi ) ) ) | 
						
							| 72 | 64 71 | syl |  |-  ( A e. CC -> ( ( ( A / _i ) / 2 ) / _pi ) = ( ( A / _i ) / ( 2 x. _pi ) ) ) | 
						
							| 73 | 30 65 | mulcli |  |-  ( 2 x. _pi ) e. CC | 
						
							| 74 | 30 65 32 68 | mulne0i |  |-  ( 2 x. _pi ) =/= 0 | 
						
							| 75 | 73 74 | pm3.2i |  |-  ( ( 2 x. _pi ) e. CC /\ ( 2 x. _pi ) =/= 0 ) | 
						
							| 76 |  | divdiv1 |  |-  ( ( A e. CC /\ ( _i e. CC /\ _i =/= 0 ) /\ ( ( 2 x. _pi ) e. CC /\ ( 2 x. _pi ) =/= 0 ) ) -> ( ( A / _i ) / ( 2 x. _pi ) ) = ( A / ( _i x. ( 2 x. _pi ) ) ) ) | 
						
							| 77 | 59 75 76 | mp3an23 |  |-  ( A e. CC -> ( ( A / _i ) / ( 2 x. _pi ) ) = ( A / ( _i x. ( 2 x. _pi ) ) ) ) | 
						
							| 78 | 72 77 | eqtrd |  |-  ( A e. CC -> ( ( ( A / _i ) / 2 ) / _pi ) = ( A / ( _i x. ( 2 x. _pi ) ) ) ) | 
						
							| 79 | 62 78 | eqtrd |  |-  ( A e. CC -> ( ( ( A / 2 ) / _i ) / _pi ) = ( A / ( _i x. ( 2 x. _pi ) ) ) ) | 
						
							| 80 | 79 | eleq1d |  |-  ( A e. CC -> ( ( ( ( A / 2 ) / _i ) / _pi ) e. ZZ <-> ( A / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) ) | 
						
							| 81 | 8 57 80 | 3bitr3d |  |-  ( A e. CC -> ( ( exp ` A ) = 1 <-> ( A / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) ) |