Step |
Hyp |
Ref |
Expression |
1 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
2 |
|
mulcom |
|- ( ( A e. CC /\ N e. CC ) -> ( A x. N ) = ( N x. A ) ) |
3 |
1 2
|
sylan2 |
|- ( ( A e. CC /\ N e. ZZ ) -> ( A x. N ) = ( N x. A ) ) |
4 |
3
|
fveq2d |
|- ( ( A e. CC /\ N e. ZZ ) -> ( exp ` ( A x. N ) ) = ( exp ` ( N x. A ) ) ) |
5 |
|
oveq2 |
|- ( j = 0 -> ( A x. j ) = ( A x. 0 ) ) |
6 |
5
|
fveq2d |
|- ( j = 0 -> ( exp ` ( A x. j ) ) = ( exp ` ( A x. 0 ) ) ) |
7 |
|
oveq2 |
|- ( j = 0 -> ( ( exp ` A ) ^ j ) = ( ( exp ` A ) ^ 0 ) ) |
8 |
6 7
|
eqeq12d |
|- ( j = 0 -> ( ( exp ` ( A x. j ) ) = ( ( exp ` A ) ^ j ) <-> ( exp ` ( A x. 0 ) ) = ( ( exp ` A ) ^ 0 ) ) ) |
9 |
|
oveq2 |
|- ( j = k -> ( A x. j ) = ( A x. k ) ) |
10 |
9
|
fveq2d |
|- ( j = k -> ( exp ` ( A x. j ) ) = ( exp ` ( A x. k ) ) ) |
11 |
|
oveq2 |
|- ( j = k -> ( ( exp ` A ) ^ j ) = ( ( exp ` A ) ^ k ) ) |
12 |
10 11
|
eqeq12d |
|- ( j = k -> ( ( exp ` ( A x. j ) ) = ( ( exp ` A ) ^ j ) <-> ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) ) ) |
13 |
|
oveq2 |
|- ( j = ( k + 1 ) -> ( A x. j ) = ( A x. ( k + 1 ) ) ) |
14 |
13
|
fveq2d |
|- ( j = ( k + 1 ) -> ( exp ` ( A x. j ) ) = ( exp ` ( A x. ( k + 1 ) ) ) ) |
15 |
|
oveq2 |
|- ( j = ( k + 1 ) -> ( ( exp ` A ) ^ j ) = ( ( exp ` A ) ^ ( k + 1 ) ) ) |
16 |
14 15
|
eqeq12d |
|- ( j = ( k + 1 ) -> ( ( exp ` ( A x. j ) ) = ( ( exp ` A ) ^ j ) <-> ( exp ` ( A x. ( k + 1 ) ) ) = ( ( exp ` A ) ^ ( k + 1 ) ) ) ) |
17 |
|
oveq2 |
|- ( j = -u k -> ( A x. j ) = ( A x. -u k ) ) |
18 |
17
|
fveq2d |
|- ( j = -u k -> ( exp ` ( A x. j ) ) = ( exp ` ( A x. -u k ) ) ) |
19 |
|
oveq2 |
|- ( j = -u k -> ( ( exp ` A ) ^ j ) = ( ( exp ` A ) ^ -u k ) ) |
20 |
18 19
|
eqeq12d |
|- ( j = -u k -> ( ( exp ` ( A x. j ) ) = ( ( exp ` A ) ^ j ) <-> ( exp ` ( A x. -u k ) ) = ( ( exp ` A ) ^ -u k ) ) ) |
21 |
|
oveq2 |
|- ( j = N -> ( A x. j ) = ( A x. N ) ) |
22 |
21
|
fveq2d |
|- ( j = N -> ( exp ` ( A x. j ) ) = ( exp ` ( A x. N ) ) ) |
23 |
|
oveq2 |
|- ( j = N -> ( ( exp ` A ) ^ j ) = ( ( exp ` A ) ^ N ) ) |
24 |
22 23
|
eqeq12d |
|- ( j = N -> ( ( exp ` ( A x. j ) ) = ( ( exp ` A ) ^ j ) <-> ( exp ` ( A x. N ) ) = ( ( exp ` A ) ^ N ) ) ) |
25 |
|
ef0 |
|- ( exp ` 0 ) = 1 |
26 |
|
mul01 |
|- ( A e. CC -> ( A x. 0 ) = 0 ) |
27 |
26
|
fveq2d |
|- ( A e. CC -> ( exp ` ( A x. 0 ) ) = ( exp ` 0 ) ) |
28 |
|
efcl |
|- ( A e. CC -> ( exp ` A ) e. CC ) |
29 |
28
|
exp0d |
|- ( A e. CC -> ( ( exp ` A ) ^ 0 ) = 1 ) |
30 |
25 27 29
|
3eqtr4a |
|- ( A e. CC -> ( exp ` ( A x. 0 ) ) = ( ( exp ` A ) ^ 0 ) ) |
31 |
|
oveq1 |
|- ( ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) -> ( ( exp ` ( A x. k ) ) x. ( exp ` A ) ) = ( ( ( exp ` A ) ^ k ) x. ( exp ` A ) ) ) |
32 |
31
|
adantl |
|- ( ( ( A e. CC /\ k e. NN0 ) /\ ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) ) -> ( ( exp ` ( A x. k ) ) x. ( exp ` A ) ) = ( ( ( exp ` A ) ^ k ) x. ( exp ` A ) ) ) |
33 |
|
nn0cn |
|- ( k e. NN0 -> k e. CC ) |
34 |
|
ax-1cn |
|- 1 e. CC |
35 |
|
adddi |
|- ( ( A e. CC /\ k e. CC /\ 1 e. CC ) -> ( A x. ( k + 1 ) ) = ( ( A x. k ) + ( A x. 1 ) ) ) |
36 |
34 35
|
mp3an3 |
|- ( ( A e. CC /\ k e. CC ) -> ( A x. ( k + 1 ) ) = ( ( A x. k ) + ( A x. 1 ) ) ) |
37 |
|
mulid1 |
|- ( A e. CC -> ( A x. 1 ) = A ) |
38 |
37
|
adantr |
|- ( ( A e. CC /\ k e. CC ) -> ( A x. 1 ) = A ) |
39 |
38
|
oveq2d |
|- ( ( A e. CC /\ k e. CC ) -> ( ( A x. k ) + ( A x. 1 ) ) = ( ( A x. k ) + A ) ) |
40 |
36 39
|
eqtrd |
|- ( ( A e. CC /\ k e. CC ) -> ( A x. ( k + 1 ) ) = ( ( A x. k ) + A ) ) |
41 |
33 40
|
sylan2 |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A x. ( k + 1 ) ) = ( ( A x. k ) + A ) ) |
42 |
41
|
fveq2d |
|- ( ( A e. CC /\ k e. NN0 ) -> ( exp ` ( A x. ( k + 1 ) ) ) = ( exp ` ( ( A x. k ) + A ) ) ) |
43 |
|
mulcl |
|- ( ( A e. CC /\ k e. CC ) -> ( A x. k ) e. CC ) |
44 |
33 43
|
sylan2 |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A x. k ) e. CC ) |
45 |
|
simpl |
|- ( ( A e. CC /\ k e. NN0 ) -> A e. CC ) |
46 |
|
efadd |
|- ( ( ( A x. k ) e. CC /\ A e. CC ) -> ( exp ` ( ( A x. k ) + A ) ) = ( ( exp ` ( A x. k ) ) x. ( exp ` A ) ) ) |
47 |
44 45 46
|
syl2anc |
|- ( ( A e. CC /\ k e. NN0 ) -> ( exp ` ( ( A x. k ) + A ) ) = ( ( exp ` ( A x. k ) ) x. ( exp ` A ) ) ) |
48 |
42 47
|
eqtrd |
|- ( ( A e. CC /\ k e. NN0 ) -> ( exp ` ( A x. ( k + 1 ) ) ) = ( ( exp ` ( A x. k ) ) x. ( exp ` A ) ) ) |
49 |
48
|
adantr |
|- ( ( ( A e. CC /\ k e. NN0 ) /\ ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) ) -> ( exp ` ( A x. ( k + 1 ) ) ) = ( ( exp ` ( A x. k ) ) x. ( exp ` A ) ) ) |
50 |
|
expp1 |
|- ( ( ( exp ` A ) e. CC /\ k e. NN0 ) -> ( ( exp ` A ) ^ ( k + 1 ) ) = ( ( ( exp ` A ) ^ k ) x. ( exp ` A ) ) ) |
51 |
28 50
|
sylan |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ( exp ` A ) ^ ( k + 1 ) ) = ( ( ( exp ` A ) ^ k ) x. ( exp ` A ) ) ) |
52 |
51
|
adantr |
|- ( ( ( A e. CC /\ k e. NN0 ) /\ ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) ) -> ( ( exp ` A ) ^ ( k + 1 ) ) = ( ( ( exp ` A ) ^ k ) x. ( exp ` A ) ) ) |
53 |
32 49 52
|
3eqtr4d |
|- ( ( ( A e. CC /\ k e. NN0 ) /\ ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) ) -> ( exp ` ( A x. ( k + 1 ) ) ) = ( ( exp ` A ) ^ ( k + 1 ) ) ) |
54 |
53
|
exp31 |
|- ( A e. CC -> ( k e. NN0 -> ( ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) -> ( exp ` ( A x. ( k + 1 ) ) ) = ( ( exp ` A ) ^ ( k + 1 ) ) ) ) ) |
55 |
|
oveq2 |
|- ( ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) -> ( 1 / ( exp ` ( A x. k ) ) ) = ( 1 / ( ( exp ` A ) ^ k ) ) ) |
56 |
|
nncn |
|- ( k e. NN -> k e. CC ) |
57 |
|
mulneg2 |
|- ( ( A e. CC /\ k e. CC ) -> ( A x. -u k ) = -u ( A x. k ) ) |
58 |
56 57
|
sylan2 |
|- ( ( A e. CC /\ k e. NN ) -> ( A x. -u k ) = -u ( A x. k ) ) |
59 |
58
|
fveq2d |
|- ( ( A e. CC /\ k e. NN ) -> ( exp ` ( A x. -u k ) ) = ( exp ` -u ( A x. k ) ) ) |
60 |
56 43
|
sylan2 |
|- ( ( A e. CC /\ k e. NN ) -> ( A x. k ) e. CC ) |
61 |
|
efneg |
|- ( ( A x. k ) e. CC -> ( exp ` -u ( A x. k ) ) = ( 1 / ( exp ` ( A x. k ) ) ) ) |
62 |
60 61
|
syl |
|- ( ( A e. CC /\ k e. NN ) -> ( exp ` -u ( A x. k ) ) = ( 1 / ( exp ` ( A x. k ) ) ) ) |
63 |
59 62
|
eqtrd |
|- ( ( A e. CC /\ k e. NN ) -> ( exp ` ( A x. -u k ) ) = ( 1 / ( exp ` ( A x. k ) ) ) ) |
64 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
65 |
|
expneg |
|- ( ( ( exp ` A ) e. CC /\ k e. NN0 ) -> ( ( exp ` A ) ^ -u k ) = ( 1 / ( ( exp ` A ) ^ k ) ) ) |
66 |
28 64 65
|
syl2an |
|- ( ( A e. CC /\ k e. NN ) -> ( ( exp ` A ) ^ -u k ) = ( 1 / ( ( exp ` A ) ^ k ) ) ) |
67 |
63 66
|
eqeq12d |
|- ( ( A e. CC /\ k e. NN ) -> ( ( exp ` ( A x. -u k ) ) = ( ( exp ` A ) ^ -u k ) <-> ( 1 / ( exp ` ( A x. k ) ) ) = ( 1 / ( ( exp ` A ) ^ k ) ) ) ) |
68 |
55 67
|
syl5ibr |
|- ( ( A e. CC /\ k e. NN ) -> ( ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) -> ( exp ` ( A x. -u k ) ) = ( ( exp ` A ) ^ -u k ) ) ) |
69 |
68
|
ex |
|- ( A e. CC -> ( k e. NN -> ( ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) -> ( exp ` ( A x. -u k ) ) = ( ( exp ` A ) ^ -u k ) ) ) ) |
70 |
8 12 16 20 24 30 54 69
|
zindd |
|- ( A e. CC -> ( N e. ZZ -> ( exp ` ( A x. N ) ) = ( ( exp ` A ) ^ N ) ) ) |
71 |
70
|
imp |
|- ( ( A e. CC /\ N e. ZZ ) -> ( exp ` ( A x. N ) ) = ( ( exp ` A ) ^ N ) ) |
72 |
4 71
|
eqtr3d |
|- ( ( A e. CC /\ N e. ZZ ) -> ( exp ` ( N x. A ) ) = ( ( exp ` A ) ^ N ) ) |