Step |
Hyp |
Ref |
Expression |
1 |
|
df-ef |
|- exp = ( x e. CC |-> sum_ k e. NN0 ( ( x ^ k ) / ( ! ` k ) ) ) |
2 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
3 |
|
0zd |
|- ( x e. CC -> 0 e. ZZ ) |
4 |
|
eqid |
|- ( n e. NN0 |-> ( ( x ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( x ^ n ) / ( ! ` n ) ) ) |
5 |
4
|
eftval |
|- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( x ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( x ^ k ) / ( ! ` k ) ) ) |
6 |
5
|
adantl |
|- ( ( x e. CC /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( x ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( x ^ k ) / ( ! ` k ) ) ) |
7 |
|
eftcl |
|- ( ( x e. CC /\ k e. NN0 ) -> ( ( x ^ k ) / ( ! ` k ) ) e. CC ) |
8 |
4
|
efcllem |
|- ( x e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( x ^ n ) / ( ! ` n ) ) ) ) e. dom ~~> ) |
9 |
2 3 6 7 8
|
isumcl |
|- ( x e. CC -> sum_ k e. NN0 ( ( x ^ k ) / ( ! ` k ) ) e. CC ) |
10 |
1 9
|
fmpti |
|- exp : CC --> CC |