Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
|- W = ( _I ` Word ( I X. 2o ) ) |
2 |
|
efgval.r |
|- .~ = ( ~FG ` I ) |
3 |
|
efgval2.m |
|- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
4 |
|
efgval2.t |
|- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
5 |
|
efgred.d |
|- D = ( W \ U_ x e. W ran ( T ` x ) ) |
6 |
|
efgred.s |
|- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
7 |
|
efgcpbllem.1 |
|- L = { <. i , j >. | ( { i , j } C_ W /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) } |
8 |
|
oveq2 |
|- ( i = X -> ( A ++ i ) = ( A ++ X ) ) |
9 |
8
|
oveq1d |
|- ( i = X -> ( ( A ++ i ) ++ B ) = ( ( A ++ X ) ++ B ) ) |
10 |
|
oveq2 |
|- ( j = Y -> ( A ++ j ) = ( A ++ Y ) ) |
11 |
10
|
oveq1d |
|- ( j = Y -> ( ( A ++ j ) ++ B ) = ( ( A ++ Y ) ++ B ) ) |
12 |
9 11
|
breqan12d |
|- ( ( i = X /\ j = Y ) -> ( ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) <-> ( ( A ++ X ) ++ B ) .~ ( ( A ++ Y ) ++ B ) ) ) |
13 |
|
vex |
|- i e. _V |
14 |
|
vex |
|- j e. _V |
15 |
13 14
|
prss |
|- ( ( i e. W /\ j e. W ) <-> { i , j } C_ W ) |
16 |
15
|
anbi1i |
|- ( ( ( i e. W /\ j e. W ) /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) <-> ( { i , j } C_ W /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) ) |
17 |
16
|
opabbii |
|- { <. i , j >. | ( ( i e. W /\ j e. W ) /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) } = { <. i , j >. | ( { i , j } C_ W /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) } |
18 |
7 17
|
eqtr4i |
|- L = { <. i , j >. | ( ( i e. W /\ j e. W ) /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) } |
19 |
12 18
|
brab2a |
|- ( X L Y <-> ( ( X e. W /\ Y e. W ) /\ ( ( A ++ X ) ++ B ) .~ ( ( A ++ Y ) ++ B ) ) ) |
20 |
|
df-3an |
|- ( ( X e. W /\ Y e. W /\ ( ( A ++ X ) ++ B ) .~ ( ( A ++ Y ) ++ B ) ) <-> ( ( X e. W /\ Y e. W ) /\ ( ( A ++ X ) ++ B ) .~ ( ( A ++ Y ) ++ B ) ) ) |
21 |
19 20
|
bitr4i |
|- ( X L Y <-> ( X e. W /\ Y e. W /\ ( ( A ++ X ) ++ B ) .~ ( ( A ++ Y ) ++ B ) ) ) |