Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
|- W = ( _I ` Word ( I X. 2o ) ) |
2 |
|
efgval.r |
|- .~ = ( ~FG ` I ) |
3 |
|
efgval2.m |
|- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
4 |
|
efgval2.t |
|- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
5 |
|
efgred.d |
|- D = ( W \ U_ x e. W ran ( T ` x ) ) |
6 |
|
efgred.s |
|- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
7 |
|
efgcpbllem.1 |
|- L = { <. i , j >. | ( { i , j } C_ W /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) } |
8 |
1 2 3 4
|
efgval2 |
|- .~ = |^| { r | ( r Er W /\ A. f e. W ran ( T ` f ) C_ [ f ] r ) } |
9 |
7
|
relopabiv |
|- Rel L |
10 |
9
|
a1i |
|- ( ( A e. W /\ B e. W ) -> Rel L ) |
11 |
1 2 3 4 5 6 7
|
efgcpbllema |
|- ( f L g <-> ( f e. W /\ g e. W /\ ( ( A ++ f ) ++ B ) .~ ( ( A ++ g ) ++ B ) ) ) |
12 |
11
|
simp2bi |
|- ( f L g -> g e. W ) |
13 |
12
|
adantl |
|- ( ( ( A e. W /\ B e. W ) /\ f L g ) -> g e. W ) |
14 |
11
|
simp1bi |
|- ( f L g -> f e. W ) |
15 |
14
|
adantl |
|- ( ( ( A e. W /\ B e. W ) /\ f L g ) -> f e. W ) |
16 |
1 2
|
efger |
|- .~ Er W |
17 |
16
|
a1i |
|- ( ( ( A e. W /\ B e. W ) /\ f L g ) -> .~ Er W ) |
18 |
11
|
simp3bi |
|- ( f L g -> ( ( A ++ f ) ++ B ) .~ ( ( A ++ g ) ++ B ) ) |
19 |
18
|
adantl |
|- ( ( ( A e. W /\ B e. W ) /\ f L g ) -> ( ( A ++ f ) ++ B ) .~ ( ( A ++ g ) ++ B ) ) |
20 |
17 19
|
ersym |
|- ( ( ( A e. W /\ B e. W ) /\ f L g ) -> ( ( A ++ g ) ++ B ) .~ ( ( A ++ f ) ++ B ) ) |
21 |
1 2 3 4 5 6 7
|
efgcpbllema |
|- ( g L f <-> ( g e. W /\ f e. W /\ ( ( A ++ g ) ++ B ) .~ ( ( A ++ f ) ++ B ) ) ) |
22 |
13 15 20 21
|
syl3anbrc |
|- ( ( ( A e. W /\ B e. W ) /\ f L g ) -> g L f ) |
23 |
14
|
ad2antrl |
|- ( ( ( A e. W /\ B e. W ) /\ ( f L g /\ g L h ) ) -> f e. W ) |
24 |
1 2 3 4 5 6 7
|
efgcpbllema |
|- ( g L h <-> ( g e. W /\ h e. W /\ ( ( A ++ g ) ++ B ) .~ ( ( A ++ h ) ++ B ) ) ) |
25 |
24
|
simp2bi |
|- ( g L h -> h e. W ) |
26 |
25
|
ad2antll |
|- ( ( ( A e. W /\ B e. W ) /\ ( f L g /\ g L h ) ) -> h e. W ) |
27 |
16
|
a1i |
|- ( ( ( A e. W /\ B e. W ) /\ ( f L g /\ g L h ) ) -> .~ Er W ) |
28 |
18
|
ad2antrl |
|- ( ( ( A e. W /\ B e. W ) /\ ( f L g /\ g L h ) ) -> ( ( A ++ f ) ++ B ) .~ ( ( A ++ g ) ++ B ) ) |
29 |
24
|
simp3bi |
|- ( g L h -> ( ( A ++ g ) ++ B ) .~ ( ( A ++ h ) ++ B ) ) |
30 |
29
|
ad2antll |
|- ( ( ( A e. W /\ B e. W ) /\ ( f L g /\ g L h ) ) -> ( ( A ++ g ) ++ B ) .~ ( ( A ++ h ) ++ B ) ) |
31 |
27 28 30
|
ertrd |
|- ( ( ( A e. W /\ B e. W ) /\ ( f L g /\ g L h ) ) -> ( ( A ++ f ) ++ B ) .~ ( ( A ++ h ) ++ B ) ) |
32 |
1 2 3 4 5 6 7
|
efgcpbllema |
|- ( f L h <-> ( f e. W /\ h e. W /\ ( ( A ++ f ) ++ B ) .~ ( ( A ++ h ) ++ B ) ) ) |
33 |
23 26 31 32
|
syl3anbrc |
|- ( ( ( A e. W /\ B e. W ) /\ ( f L g /\ g L h ) ) -> f L h ) |
34 |
16
|
a1i |
|- ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> .~ Er W ) |
35 |
|
fviss |
|- ( _I ` Word ( I X. 2o ) ) C_ Word ( I X. 2o ) |
36 |
1 35
|
eqsstri |
|- W C_ Word ( I X. 2o ) |
37 |
|
simpll |
|- ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> A e. W ) |
38 |
36 37
|
sselid |
|- ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> A e. Word ( I X. 2o ) ) |
39 |
|
simpr |
|- ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> f e. W ) |
40 |
36 39
|
sselid |
|- ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> f e. Word ( I X. 2o ) ) |
41 |
|
ccatcl |
|- ( ( A e. Word ( I X. 2o ) /\ f e. Word ( I X. 2o ) ) -> ( A ++ f ) e. Word ( I X. 2o ) ) |
42 |
38 40 41
|
syl2anc |
|- ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> ( A ++ f ) e. Word ( I X. 2o ) ) |
43 |
|
simplr |
|- ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> B e. W ) |
44 |
36 43
|
sselid |
|- ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> B e. Word ( I X. 2o ) ) |
45 |
|
ccatcl |
|- ( ( ( A ++ f ) e. Word ( I X. 2o ) /\ B e. Word ( I X. 2o ) ) -> ( ( A ++ f ) ++ B ) e. Word ( I X. 2o ) ) |
46 |
42 44 45
|
syl2anc |
|- ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> ( ( A ++ f ) ++ B ) e. Word ( I X. 2o ) ) |
47 |
1
|
efgrcl |
|- ( A e. W -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) |
48 |
47
|
simprd |
|- ( A e. W -> W = Word ( I X. 2o ) ) |
49 |
48
|
ad2antrr |
|- ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> W = Word ( I X. 2o ) ) |
50 |
46 49
|
eleqtrrd |
|- ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> ( ( A ++ f ) ++ B ) e. W ) |
51 |
34 50
|
erref |
|- ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> ( ( A ++ f ) ++ B ) .~ ( ( A ++ f ) ++ B ) ) |
52 |
51
|
ex |
|- ( ( A e. W /\ B e. W ) -> ( f e. W -> ( ( A ++ f ) ++ B ) .~ ( ( A ++ f ) ++ B ) ) ) |
53 |
52
|
pm4.71d |
|- ( ( A e. W /\ B e. W ) -> ( f e. W <-> ( f e. W /\ ( ( A ++ f ) ++ B ) .~ ( ( A ++ f ) ++ B ) ) ) ) |
54 |
1 2 3 4 5 6 7
|
efgcpbllema |
|- ( f L f <-> ( f e. W /\ f e. W /\ ( ( A ++ f ) ++ B ) .~ ( ( A ++ f ) ++ B ) ) ) |
55 |
|
df-3an |
|- ( ( f e. W /\ f e. W /\ ( ( A ++ f ) ++ B ) .~ ( ( A ++ f ) ++ B ) ) <-> ( ( f e. W /\ f e. W ) /\ ( ( A ++ f ) ++ B ) .~ ( ( A ++ f ) ++ B ) ) ) |
56 |
|
anidm |
|- ( ( f e. W /\ f e. W ) <-> f e. W ) |
57 |
56
|
anbi1i |
|- ( ( ( f e. W /\ f e. W ) /\ ( ( A ++ f ) ++ B ) .~ ( ( A ++ f ) ++ B ) ) <-> ( f e. W /\ ( ( A ++ f ) ++ B ) .~ ( ( A ++ f ) ++ B ) ) ) |
58 |
54 55 57
|
3bitri |
|- ( f L f <-> ( f e. W /\ ( ( A ++ f ) ++ B ) .~ ( ( A ++ f ) ++ B ) ) ) |
59 |
53 58
|
bitr4di |
|- ( ( A e. W /\ B e. W ) -> ( f e. W <-> f L f ) ) |
60 |
10 22 33 59
|
iserd |
|- ( ( A e. W /\ B e. W ) -> L Er W ) |
61 |
1 2 3 4
|
efgtf |
|- ( f e. W -> ( ( T ` f ) = ( a e. ( 0 ... ( # ` f ) ) , b e. ( I X. 2o ) |-> ( f splice <. a , a , <" b ( M ` b ) "> >. ) ) /\ ( T ` f ) : ( ( 0 ... ( # ` f ) ) X. ( I X. 2o ) ) --> W ) ) |
62 |
61
|
simprd |
|- ( f e. W -> ( T ` f ) : ( ( 0 ... ( # ` f ) ) X. ( I X. 2o ) ) --> W ) |
63 |
62
|
adantl |
|- ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> ( T ` f ) : ( ( 0 ... ( # ` f ) ) X. ( I X. 2o ) ) --> W ) |
64 |
|
ffn |
|- ( ( T ` f ) : ( ( 0 ... ( # ` f ) ) X. ( I X. 2o ) ) --> W -> ( T ` f ) Fn ( ( 0 ... ( # ` f ) ) X. ( I X. 2o ) ) ) |
65 |
|
ovelrn |
|- ( ( T ` f ) Fn ( ( 0 ... ( # ` f ) ) X. ( I X. 2o ) ) -> ( a e. ran ( T ` f ) <-> E. c e. ( 0 ... ( # ` f ) ) E. u e. ( I X. 2o ) a = ( c ( T ` f ) u ) ) ) |
66 |
63 64 65
|
3syl |
|- ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> ( a e. ran ( T ` f ) <-> E. c e. ( 0 ... ( # ` f ) ) E. u e. ( I X. 2o ) a = ( c ( T ` f ) u ) ) ) |
67 |
|
simplr |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> f e. W ) |
68 |
62
|
ad2antlr |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( T ` f ) : ( ( 0 ... ( # ` f ) ) X. ( I X. 2o ) ) --> W ) |
69 |
|
simprl |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> c e. ( 0 ... ( # ` f ) ) ) |
70 |
|
simprr |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> u e. ( I X. 2o ) ) |
71 |
68 69 70
|
fovrnd |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( c ( T ` f ) u ) e. W ) |
72 |
50
|
adantr |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( A ++ f ) ++ B ) e. W ) |
73 |
37
|
adantr |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> A e. W ) |
74 |
36 73
|
sselid |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> A e. Word ( I X. 2o ) ) |
75 |
40
|
adantr |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> f e. Word ( I X. 2o ) ) |
76 |
|
pfxcl |
|- ( f e. Word ( I X. 2o ) -> ( f prefix c ) e. Word ( I X. 2o ) ) |
77 |
75 76
|
syl |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( f prefix c ) e. Word ( I X. 2o ) ) |
78 |
|
ccatcl |
|- ( ( A e. Word ( I X. 2o ) /\ ( f prefix c ) e. Word ( I X. 2o ) ) -> ( A ++ ( f prefix c ) ) e. Word ( I X. 2o ) ) |
79 |
74 77 78
|
syl2anc |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( A ++ ( f prefix c ) ) e. Word ( I X. 2o ) ) |
80 |
3
|
efgmf |
|- M : ( I X. 2o ) --> ( I X. 2o ) |
81 |
80
|
ffvelrni |
|- ( u e. ( I X. 2o ) -> ( M ` u ) e. ( I X. 2o ) ) |
82 |
81
|
ad2antll |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( M ` u ) e. ( I X. 2o ) ) |
83 |
70 82
|
s2cld |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> <" u ( M ` u ) "> e. Word ( I X. 2o ) ) |
84 |
|
ccatcl |
|- ( ( ( A ++ ( f prefix c ) ) e. Word ( I X. 2o ) /\ <" u ( M ` u ) "> e. Word ( I X. 2o ) ) -> ( ( A ++ ( f prefix c ) ) ++ <" u ( M ` u ) "> ) e. Word ( I X. 2o ) ) |
85 |
79 83 84
|
syl2anc |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( A ++ ( f prefix c ) ) ++ <" u ( M ` u ) "> ) e. Word ( I X. 2o ) ) |
86 |
|
swrdcl |
|- ( f e. Word ( I X. 2o ) -> ( f substr <. c , ( # ` f ) >. ) e. Word ( I X. 2o ) ) |
87 |
75 86
|
syl |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( f substr <. c , ( # ` f ) >. ) e. Word ( I X. 2o ) ) |
88 |
44
|
adantr |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> B e. Word ( I X. 2o ) ) |
89 |
|
ccatass |
|- ( ( ( ( A ++ ( f prefix c ) ) ++ <" u ( M ` u ) "> ) e. Word ( I X. 2o ) /\ ( f substr <. c , ( # ` f ) >. ) e. Word ( I X. 2o ) /\ B e. Word ( I X. 2o ) ) -> ( ( ( ( A ++ ( f prefix c ) ) ++ <" u ( M ` u ) "> ) ++ ( f substr <. c , ( # ` f ) >. ) ) ++ B ) = ( ( ( A ++ ( f prefix c ) ) ++ <" u ( M ` u ) "> ) ++ ( ( f substr <. c , ( # ` f ) >. ) ++ B ) ) ) |
90 |
85 87 88 89
|
syl3anc |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( ( ( A ++ ( f prefix c ) ) ++ <" u ( M ` u ) "> ) ++ ( f substr <. c , ( # ` f ) >. ) ) ++ B ) = ( ( ( A ++ ( f prefix c ) ) ++ <" u ( M ` u ) "> ) ++ ( ( f substr <. c , ( # ` f ) >. ) ++ B ) ) ) |
91 |
|
ccatcl |
|- ( ( ( f prefix c ) e. Word ( I X. 2o ) /\ <" u ( M ` u ) "> e. Word ( I X. 2o ) ) -> ( ( f prefix c ) ++ <" u ( M ` u ) "> ) e. Word ( I X. 2o ) ) |
92 |
77 83 91
|
syl2anc |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( f prefix c ) ++ <" u ( M ` u ) "> ) e. Word ( I X. 2o ) ) |
93 |
|
ccatass |
|- ( ( A e. Word ( I X. 2o ) /\ ( ( f prefix c ) ++ <" u ( M ` u ) "> ) e. Word ( I X. 2o ) /\ ( f substr <. c , ( # ` f ) >. ) e. Word ( I X. 2o ) ) -> ( ( A ++ ( ( f prefix c ) ++ <" u ( M ` u ) "> ) ) ++ ( f substr <. c , ( # ` f ) >. ) ) = ( A ++ ( ( ( f prefix c ) ++ <" u ( M ` u ) "> ) ++ ( f substr <. c , ( # ` f ) >. ) ) ) ) |
94 |
74 92 87 93
|
syl3anc |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( A ++ ( ( f prefix c ) ++ <" u ( M ` u ) "> ) ) ++ ( f substr <. c , ( # ` f ) >. ) ) = ( A ++ ( ( ( f prefix c ) ++ <" u ( M ` u ) "> ) ++ ( f substr <. c , ( # ` f ) >. ) ) ) ) |
95 |
|
ccatass |
|- ( ( A e. Word ( I X. 2o ) /\ ( f prefix c ) e. Word ( I X. 2o ) /\ <" u ( M ` u ) "> e. Word ( I X. 2o ) ) -> ( ( A ++ ( f prefix c ) ) ++ <" u ( M ` u ) "> ) = ( A ++ ( ( f prefix c ) ++ <" u ( M ` u ) "> ) ) ) |
96 |
74 77 83 95
|
syl3anc |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( A ++ ( f prefix c ) ) ++ <" u ( M ` u ) "> ) = ( A ++ ( ( f prefix c ) ++ <" u ( M ` u ) "> ) ) ) |
97 |
96
|
oveq1d |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( ( A ++ ( f prefix c ) ) ++ <" u ( M ` u ) "> ) ++ ( f substr <. c , ( # ` f ) >. ) ) = ( ( A ++ ( ( f prefix c ) ++ <" u ( M ` u ) "> ) ) ++ ( f substr <. c , ( # ` f ) >. ) ) ) |
98 |
1 2 3 4
|
efgtval |
|- ( ( f e. W /\ c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) -> ( c ( T ` f ) u ) = ( f splice <. c , c , <" u ( M ` u ) "> >. ) ) |
99 |
67 69 70 98
|
syl3anc |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( c ( T ` f ) u ) = ( f splice <. c , c , <" u ( M ` u ) "> >. ) ) |
100 |
|
splval |
|- ( ( f e. W /\ ( c e. ( 0 ... ( # ` f ) ) /\ c e. ( 0 ... ( # ` f ) ) /\ <" u ( M ` u ) "> e. Word ( I X. 2o ) ) ) -> ( f splice <. c , c , <" u ( M ` u ) "> >. ) = ( ( ( f prefix c ) ++ <" u ( M ` u ) "> ) ++ ( f substr <. c , ( # ` f ) >. ) ) ) |
101 |
67 69 69 83 100
|
syl13anc |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( f splice <. c , c , <" u ( M ` u ) "> >. ) = ( ( ( f prefix c ) ++ <" u ( M ` u ) "> ) ++ ( f substr <. c , ( # ` f ) >. ) ) ) |
102 |
99 101
|
eqtrd |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( c ( T ` f ) u ) = ( ( ( f prefix c ) ++ <" u ( M ` u ) "> ) ++ ( f substr <. c , ( # ` f ) >. ) ) ) |
103 |
102
|
oveq2d |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( A ++ ( c ( T ` f ) u ) ) = ( A ++ ( ( ( f prefix c ) ++ <" u ( M ` u ) "> ) ++ ( f substr <. c , ( # ` f ) >. ) ) ) ) |
104 |
94 97 103
|
3eqtr4rd |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( A ++ ( c ( T ` f ) u ) ) = ( ( ( A ++ ( f prefix c ) ) ++ <" u ( M ` u ) "> ) ++ ( f substr <. c , ( # ` f ) >. ) ) ) |
105 |
104
|
oveq1d |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( A ++ ( c ( T ` f ) u ) ) ++ B ) = ( ( ( ( A ++ ( f prefix c ) ) ++ <" u ( M ` u ) "> ) ++ ( f substr <. c , ( # ` f ) >. ) ) ++ B ) ) |
106 |
|
lencl |
|- ( A e. Word ( I X. 2o ) -> ( # ` A ) e. NN0 ) |
107 |
74 106
|
syl |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` A ) e. NN0 ) |
108 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
109 |
107 108
|
eleqtrdi |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` A ) e. ( ZZ>= ` 0 ) ) |
110 |
|
elfznn0 |
|- ( c e. ( 0 ... ( # ` f ) ) -> c e. NN0 ) |
111 |
110
|
ad2antrl |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> c e. NN0 ) |
112 |
|
uzaddcl |
|- ( ( ( # ` A ) e. ( ZZ>= ` 0 ) /\ c e. NN0 ) -> ( ( # ` A ) + c ) e. ( ZZ>= ` 0 ) ) |
113 |
109 111 112
|
syl2anc |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( # ` A ) + c ) e. ( ZZ>= ` 0 ) ) |
114 |
42
|
adantr |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( A ++ f ) e. Word ( I X. 2o ) ) |
115 |
|
ccatlen |
|- ( ( ( A ++ f ) e. Word ( I X. 2o ) /\ B e. Word ( I X. 2o ) ) -> ( # ` ( ( A ++ f ) ++ B ) ) = ( ( # ` ( A ++ f ) ) + ( # ` B ) ) ) |
116 |
114 88 115
|
syl2anc |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` ( ( A ++ f ) ++ B ) ) = ( ( # ` ( A ++ f ) ) + ( # ` B ) ) ) |
117 |
|
ccatlen |
|- ( ( A e. Word ( I X. 2o ) /\ f e. Word ( I X. 2o ) ) -> ( # ` ( A ++ f ) ) = ( ( # ` A ) + ( # ` f ) ) ) |
118 |
74 75 117
|
syl2anc |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` ( A ++ f ) ) = ( ( # ` A ) + ( # ` f ) ) ) |
119 |
|
elfzuz3 |
|- ( c e. ( 0 ... ( # ` f ) ) -> ( # ` f ) e. ( ZZ>= ` c ) ) |
120 |
119
|
ad2antrl |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` f ) e. ( ZZ>= ` c ) ) |
121 |
107
|
nn0zd |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` A ) e. ZZ ) |
122 |
|
eluzadd |
|- ( ( ( # ` f ) e. ( ZZ>= ` c ) /\ ( # ` A ) e. ZZ ) -> ( ( # ` f ) + ( # ` A ) ) e. ( ZZ>= ` ( c + ( # ` A ) ) ) ) |
123 |
120 121 122
|
syl2anc |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( # ` f ) + ( # ` A ) ) e. ( ZZ>= ` ( c + ( # ` A ) ) ) ) |
124 |
|
lencl |
|- ( f e. Word ( I X. 2o ) -> ( # ` f ) e. NN0 ) |
125 |
75 124
|
syl |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` f ) e. NN0 ) |
126 |
125
|
nn0cnd |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` f ) e. CC ) |
127 |
107
|
nn0cnd |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` A ) e. CC ) |
128 |
126 127
|
addcomd |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( # ` f ) + ( # ` A ) ) = ( ( # ` A ) + ( # ` f ) ) ) |
129 |
111
|
nn0cnd |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> c e. CC ) |
130 |
129 127
|
addcomd |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( c + ( # ` A ) ) = ( ( # ` A ) + c ) ) |
131 |
130
|
fveq2d |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ZZ>= ` ( c + ( # ` A ) ) ) = ( ZZ>= ` ( ( # ` A ) + c ) ) ) |
132 |
123 128 131
|
3eltr3d |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( # ` A ) + ( # ` f ) ) e. ( ZZ>= ` ( ( # ` A ) + c ) ) ) |
133 |
118 132
|
eqeltrd |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` ( A ++ f ) ) e. ( ZZ>= ` ( ( # ` A ) + c ) ) ) |
134 |
|
lencl |
|- ( B e. Word ( I X. 2o ) -> ( # ` B ) e. NN0 ) |
135 |
88 134
|
syl |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` B ) e. NN0 ) |
136 |
|
uzaddcl |
|- ( ( ( # ` ( A ++ f ) ) e. ( ZZ>= ` ( ( # ` A ) + c ) ) /\ ( # ` B ) e. NN0 ) -> ( ( # ` ( A ++ f ) ) + ( # ` B ) ) e. ( ZZ>= ` ( ( # ` A ) + c ) ) ) |
137 |
133 135 136
|
syl2anc |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( # ` ( A ++ f ) ) + ( # ` B ) ) e. ( ZZ>= ` ( ( # ` A ) + c ) ) ) |
138 |
116 137
|
eqeltrd |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` ( ( A ++ f ) ++ B ) ) e. ( ZZ>= ` ( ( # ` A ) + c ) ) ) |
139 |
|
elfzuzb |
|- ( ( ( # ` A ) + c ) e. ( 0 ... ( # ` ( ( A ++ f ) ++ B ) ) ) <-> ( ( ( # ` A ) + c ) e. ( ZZ>= ` 0 ) /\ ( # ` ( ( A ++ f ) ++ B ) ) e. ( ZZ>= ` ( ( # ` A ) + c ) ) ) ) |
140 |
113 138 139
|
sylanbrc |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( # ` A ) + c ) e. ( 0 ... ( # ` ( ( A ++ f ) ++ B ) ) ) ) |
141 |
1 2 3 4
|
efgtval |
|- ( ( ( ( A ++ f ) ++ B ) e. W /\ ( ( # ` A ) + c ) e. ( 0 ... ( # ` ( ( A ++ f ) ++ B ) ) ) /\ u e. ( I X. 2o ) ) -> ( ( ( # ` A ) + c ) ( T ` ( ( A ++ f ) ++ B ) ) u ) = ( ( ( A ++ f ) ++ B ) splice <. ( ( # ` A ) + c ) , ( ( # ` A ) + c ) , <" u ( M ` u ) "> >. ) ) |
142 |
72 140 70 141
|
syl3anc |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( ( # ` A ) + c ) ( T ` ( ( A ++ f ) ++ B ) ) u ) = ( ( ( A ++ f ) ++ B ) splice <. ( ( # ` A ) + c ) , ( ( # ` A ) + c ) , <" u ( M ` u ) "> >. ) ) |
143 |
|
wrd0 |
|- (/) e. Word ( I X. 2o ) |
144 |
143
|
a1i |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> (/) e. Word ( I X. 2o ) ) |
145 |
|
ccatcl |
|- ( ( ( f substr <. c , ( # ` f ) >. ) e. Word ( I X. 2o ) /\ B e. Word ( I X. 2o ) ) -> ( ( f substr <. c , ( # ` f ) >. ) ++ B ) e. Word ( I X. 2o ) ) |
146 |
87 88 145
|
syl2anc |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( f substr <. c , ( # ` f ) >. ) ++ B ) e. Word ( I X. 2o ) ) |
147 |
|
ccatrid |
|- ( ( A ++ ( f prefix c ) ) e. Word ( I X. 2o ) -> ( ( A ++ ( f prefix c ) ) ++ (/) ) = ( A ++ ( f prefix c ) ) ) |
148 |
79 147
|
syl |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( A ++ ( f prefix c ) ) ++ (/) ) = ( A ++ ( f prefix c ) ) ) |
149 |
148
|
oveq1d |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( ( A ++ ( f prefix c ) ) ++ (/) ) ++ ( ( f substr <. c , ( # ` f ) >. ) ++ B ) ) = ( ( A ++ ( f prefix c ) ) ++ ( ( f substr <. c , ( # ` f ) >. ) ++ B ) ) ) |
150 |
|
ccatass |
|- ( ( ( A ++ ( f prefix c ) ) e. Word ( I X. 2o ) /\ ( f substr <. c , ( # ` f ) >. ) e. Word ( I X. 2o ) /\ B e. Word ( I X. 2o ) ) -> ( ( ( A ++ ( f prefix c ) ) ++ ( f substr <. c , ( # ` f ) >. ) ) ++ B ) = ( ( A ++ ( f prefix c ) ) ++ ( ( f substr <. c , ( # ` f ) >. ) ++ B ) ) ) |
151 |
79 87 88 150
|
syl3anc |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( ( A ++ ( f prefix c ) ) ++ ( f substr <. c , ( # ` f ) >. ) ) ++ B ) = ( ( A ++ ( f prefix c ) ) ++ ( ( f substr <. c , ( # ` f ) >. ) ++ B ) ) ) |
152 |
|
ccatass |
|- ( ( A e. Word ( I X. 2o ) /\ ( f prefix c ) e. Word ( I X. 2o ) /\ ( f substr <. c , ( # ` f ) >. ) e. Word ( I X. 2o ) ) -> ( ( A ++ ( f prefix c ) ) ++ ( f substr <. c , ( # ` f ) >. ) ) = ( A ++ ( ( f prefix c ) ++ ( f substr <. c , ( # ` f ) >. ) ) ) ) |
153 |
74 77 87 152
|
syl3anc |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( A ++ ( f prefix c ) ) ++ ( f substr <. c , ( # ` f ) >. ) ) = ( A ++ ( ( f prefix c ) ++ ( f substr <. c , ( # ` f ) >. ) ) ) ) |
154 |
125 108
|
eleqtrdi |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` f ) e. ( ZZ>= ` 0 ) ) |
155 |
|
eluzfz2 |
|- ( ( # ` f ) e. ( ZZ>= ` 0 ) -> ( # ` f ) e. ( 0 ... ( # ` f ) ) ) |
156 |
154 155
|
syl |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` f ) e. ( 0 ... ( # ` f ) ) ) |
157 |
|
ccatpfx |
|- ( ( f e. Word ( I X. 2o ) /\ c e. ( 0 ... ( # ` f ) ) /\ ( # ` f ) e. ( 0 ... ( # ` f ) ) ) -> ( ( f prefix c ) ++ ( f substr <. c , ( # ` f ) >. ) ) = ( f prefix ( # ` f ) ) ) |
158 |
75 69 156 157
|
syl3anc |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( f prefix c ) ++ ( f substr <. c , ( # ` f ) >. ) ) = ( f prefix ( # ` f ) ) ) |
159 |
|
pfxid |
|- ( f e. Word ( I X. 2o ) -> ( f prefix ( # ` f ) ) = f ) |
160 |
75 159
|
syl |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( f prefix ( # ` f ) ) = f ) |
161 |
158 160
|
eqtrd |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( f prefix c ) ++ ( f substr <. c , ( # ` f ) >. ) ) = f ) |
162 |
161
|
oveq2d |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( A ++ ( ( f prefix c ) ++ ( f substr <. c , ( # ` f ) >. ) ) ) = ( A ++ f ) ) |
163 |
153 162
|
eqtrd |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( A ++ ( f prefix c ) ) ++ ( f substr <. c , ( # ` f ) >. ) ) = ( A ++ f ) ) |
164 |
163
|
oveq1d |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( ( A ++ ( f prefix c ) ) ++ ( f substr <. c , ( # ` f ) >. ) ) ++ B ) = ( ( A ++ f ) ++ B ) ) |
165 |
149 151 164
|
3eqtr2rd |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( A ++ f ) ++ B ) = ( ( ( A ++ ( f prefix c ) ) ++ (/) ) ++ ( ( f substr <. c , ( # ` f ) >. ) ++ B ) ) ) |
166 |
|
ccatlen |
|- ( ( A e. Word ( I X. 2o ) /\ ( f prefix c ) e. Word ( I X. 2o ) ) -> ( # ` ( A ++ ( f prefix c ) ) ) = ( ( # ` A ) + ( # ` ( f prefix c ) ) ) ) |
167 |
74 77 166
|
syl2anc |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` ( A ++ ( f prefix c ) ) ) = ( ( # ` A ) + ( # ` ( f prefix c ) ) ) ) |
168 |
|
pfxlen |
|- ( ( f e. Word ( I X. 2o ) /\ c e. ( 0 ... ( # ` f ) ) ) -> ( # ` ( f prefix c ) ) = c ) |
169 |
75 69 168
|
syl2anc |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` ( f prefix c ) ) = c ) |
170 |
169
|
oveq2d |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( # ` A ) + ( # ` ( f prefix c ) ) ) = ( ( # ` A ) + c ) ) |
171 |
167 170
|
eqtr2d |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( # ` A ) + c ) = ( # ` ( A ++ ( f prefix c ) ) ) ) |
172 |
|
hash0 |
|- ( # ` (/) ) = 0 |
173 |
172
|
oveq2i |
|- ( ( ( # ` A ) + c ) + ( # ` (/) ) ) = ( ( ( # ` A ) + c ) + 0 ) |
174 |
107 111
|
nn0addcld |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( # ` A ) + c ) e. NN0 ) |
175 |
174
|
nn0cnd |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( # ` A ) + c ) e. CC ) |
176 |
175
|
addid1d |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( ( # ` A ) + c ) + 0 ) = ( ( # ` A ) + c ) ) |
177 |
173 176
|
eqtr2id |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( # ` A ) + c ) = ( ( ( # ` A ) + c ) + ( # ` (/) ) ) ) |
178 |
79 144 146 83 165 171 177
|
splval2 |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( ( A ++ f ) ++ B ) splice <. ( ( # ` A ) + c ) , ( ( # ` A ) + c ) , <" u ( M ` u ) "> >. ) = ( ( ( A ++ ( f prefix c ) ) ++ <" u ( M ` u ) "> ) ++ ( ( f substr <. c , ( # ` f ) >. ) ++ B ) ) ) |
179 |
142 178
|
eqtrd |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( ( # ` A ) + c ) ( T ` ( ( A ++ f ) ++ B ) ) u ) = ( ( ( A ++ ( f prefix c ) ) ++ <" u ( M ` u ) "> ) ++ ( ( f substr <. c , ( # ` f ) >. ) ++ B ) ) ) |
180 |
90 105 179
|
3eqtr4d |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( A ++ ( c ( T ` f ) u ) ) ++ B ) = ( ( ( # ` A ) + c ) ( T ` ( ( A ++ f ) ++ B ) ) u ) ) |
181 |
1 2 3 4
|
efgtf |
|- ( ( ( A ++ f ) ++ B ) e. W -> ( ( T ` ( ( A ++ f ) ++ B ) ) = ( a e. ( 0 ... ( # ` ( ( A ++ f ) ++ B ) ) ) , b e. ( I X. 2o ) |-> ( ( ( A ++ f ) ++ B ) splice <. a , a , <" b ( M ` b ) "> >. ) ) /\ ( T ` ( ( A ++ f ) ++ B ) ) : ( ( 0 ... ( # ` ( ( A ++ f ) ++ B ) ) ) X. ( I X. 2o ) ) --> W ) ) |
182 |
181
|
simprd |
|- ( ( ( A ++ f ) ++ B ) e. W -> ( T ` ( ( A ++ f ) ++ B ) ) : ( ( 0 ... ( # ` ( ( A ++ f ) ++ B ) ) ) X. ( I X. 2o ) ) --> W ) |
183 |
|
ffn |
|- ( ( T ` ( ( A ++ f ) ++ B ) ) : ( ( 0 ... ( # ` ( ( A ++ f ) ++ B ) ) ) X. ( I X. 2o ) ) --> W -> ( T ` ( ( A ++ f ) ++ B ) ) Fn ( ( 0 ... ( # ` ( ( A ++ f ) ++ B ) ) ) X. ( I X. 2o ) ) ) |
184 |
72 182 183
|
3syl |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( T ` ( ( A ++ f ) ++ B ) ) Fn ( ( 0 ... ( # ` ( ( A ++ f ) ++ B ) ) ) X. ( I X. 2o ) ) ) |
185 |
|
fnovrn |
|- ( ( ( T ` ( ( A ++ f ) ++ B ) ) Fn ( ( 0 ... ( # ` ( ( A ++ f ) ++ B ) ) ) X. ( I X. 2o ) ) /\ ( ( # ` A ) + c ) e. ( 0 ... ( # ` ( ( A ++ f ) ++ B ) ) ) /\ u e. ( I X. 2o ) ) -> ( ( ( # ` A ) + c ) ( T ` ( ( A ++ f ) ++ B ) ) u ) e. ran ( T ` ( ( A ++ f ) ++ B ) ) ) |
186 |
184 140 70 185
|
syl3anc |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( ( # ` A ) + c ) ( T ` ( ( A ++ f ) ++ B ) ) u ) e. ran ( T ` ( ( A ++ f ) ++ B ) ) ) |
187 |
180 186
|
eqeltrd |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( A ++ ( c ( T ` f ) u ) ) ++ B ) e. ran ( T ` ( ( A ++ f ) ++ B ) ) ) |
188 |
1 2 3 4
|
efgi2 |
|- ( ( ( ( A ++ f ) ++ B ) e. W /\ ( ( A ++ ( c ( T ` f ) u ) ) ++ B ) e. ran ( T ` ( ( A ++ f ) ++ B ) ) ) -> ( ( A ++ f ) ++ B ) .~ ( ( A ++ ( c ( T ` f ) u ) ) ++ B ) ) |
189 |
72 187 188
|
syl2anc |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( A ++ f ) ++ B ) .~ ( ( A ++ ( c ( T ` f ) u ) ) ++ B ) ) |
190 |
1 2 3 4 5 6 7
|
efgcpbllema |
|- ( f L ( c ( T ` f ) u ) <-> ( f e. W /\ ( c ( T ` f ) u ) e. W /\ ( ( A ++ f ) ++ B ) .~ ( ( A ++ ( c ( T ` f ) u ) ) ++ B ) ) ) |
191 |
67 71 189 190
|
syl3anbrc |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> f L ( c ( T ` f ) u ) ) |
192 |
|
vex |
|- a e. _V |
193 |
|
vex |
|- f e. _V |
194 |
192 193
|
elec |
|- ( a e. [ f ] L <-> f L a ) |
195 |
|
breq2 |
|- ( a = ( c ( T ` f ) u ) -> ( f L a <-> f L ( c ( T ` f ) u ) ) ) |
196 |
194 195
|
syl5bb |
|- ( a = ( c ( T ` f ) u ) -> ( a e. [ f ] L <-> f L ( c ( T ` f ) u ) ) ) |
197 |
191 196
|
syl5ibrcom |
|- ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( a = ( c ( T ` f ) u ) -> a e. [ f ] L ) ) |
198 |
197
|
rexlimdvva |
|- ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> ( E. c e. ( 0 ... ( # ` f ) ) E. u e. ( I X. 2o ) a = ( c ( T ` f ) u ) -> a e. [ f ] L ) ) |
199 |
66 198
|
sylbid |
|- ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> ( a e. ran ( T ` f ) -> a e. [ f ] L ) ) |
200 |
199
|
ssrdv |
|- ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> ran ( T ` f ) C_ [ f ] L ) |
201 |
200
|
ralrimiva |
|- ( ( A e. W /\ B e. W ) -> A. f e. W ran ( T ` f ) C_ [ f ] L ) |
202 |
1
|
fvexi |
|- W e. _V |
203 |
|
erex |
|- ( L Er W -> ( W e. _V -> L e. _V ) ) |
204 |
60 202 203
|
mpisyl |
|- ( ( A e. W /\ B e. W ) -> L e. _V ) |
205 |
|
ereq1 |
|- ( r = L -> ( r Er W <-> L Er W ) ) |
206 |
|
eceq2 |
|- ( r = L -> [ f ] r = [ f ] L ) |
207 |
206
|
sseq2d |
|- ( r = L -> ( ran ( T ` f ) C_ [ f ] r <-> ran ( T ` f ) C_ [ f ] L ) ) |
208 |
207
|
ralbidv |
|- ( r = L -> ( A. f e. W ran ( T ` f ) C_ [ f ] r <-> A. f e. W ran ( T ` f ) C_ [ f ] L ) ) |
209 |
205 208
|
anbi12d |
|- ( r = L -> ( ( r Er W /\ A. f e. W ran ( T ` f ) C_ [ f ] r ) <-> ( L Er W /\ A. f e. W ran ( T ` f ) C_ [ f ] L ) ) ) |
210 |
209
|
elabg |
|- ( L e. _V -> ( L e. { r | ( r Er W /\ A. f e. W ran ( T ` f ) C_ [ f ] r ) } <-> ( L Er W /\ A. f e. W ran ( T ` f ) C_ [ f ] L ) ) ) |
211 |
204 210
|
syl |
|- ( ( A e. W /\ B e. W ) -> ( L e. { r | ( r Er W /\ A. f e. W ran ( T ` f ) C_ [ f ] r ) } <-> ( L Er W /\ A. f e. W ran ( T ` f ) C_ [ f ] L ) ) ) |
212 |
60 201 211
|
mpbir2and |
|- ( ( A e. W /\ B e. W ) -> L e. { r | ( r Er W /\ A. f e. W ran ( T ` f ) C_ [ f ] r ) } ) |
213 |
|
intss1 |
|- ( L e. { r | ( r Er W /\ A. f e. W ran ( T ` f ) C_ [ f ] r ) } -> |^| { r | ( r Er W /\ A. f e. W ran ( T ` f ) C_ [ f ] r ) } C_ L ) |
214 |
212 213
|
syl |
|- ( ( A e. W /\ B e. W ) -> |^| { r | ( r Er W /\ A. f e. W ran ( T ` f ) C_ [ f ] r ) } C_ L ) |
215 |
8 214
|
eqsstrid |
|- ( ( A e. W /\ B e. W ) -> .~ C_ L ) |