| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgval.w |  |-  W = ( _I ` Word ( I X. 2o ) ) | 
						
							| 2 |  | efgval.r |  |-  .~ = ( ~FG ` I ) | 
						
							| 3 |  | efgval2.m |  |-  M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) | 
						
							| 4 |  | efgval2.t |  |-  T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) | 
						
							| 5 |  | efgred.d |  |-  D = ( W \ U_ x e. W ran ( T ` x ) ) | 
						
							| 6 |  | efgred.s |  |-  S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) | 
						
							| 7 |  | efgcpbllem.1 |  |-  L = { <. i , j >. | ( { i , j } C_ W /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) } | 
						
							| 8 | 1 2 3 4 | efgval2 |  |-  .~ = |^| { r | ( r Er W /\ A. f e. W ran ( T ` f ) C_ [ f ] r ) } | 
						
							| 9 | 7 | relopabiv |  |-  Rel L | 
						
							| 10 | 9 | a1i |  |-  ( ( A e. W /\ B e. W ) -> Rel L ) | 
						
							| 11 | 1 2 3 4 5 6 7 | efgcpbllema |  |-  ( f L g <-> ( f e. W /\ g e. W /\ ( ( A ++ f ) ++ B ) .~ ( ( A ++ g ) ++ B ) ) ) | 
						
							| 12 | 11 | simp2bi |  |-  ( f L g -> g e. W ) | 
						
							| 13 | 12 | adantl |  |-  ( ( ( A e. W /\ B e. W ) /\ f L g ) -> g e. W ) | 
						
							| 14 | 11 | simp1bi |  |-  ( f L g -> f e. W ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ( A e. W /\ B e. W ) /\ f L g ) -> f e. W ) | 
						
							| 16 | 1 2 | efger |  |-  .~ Er W | 
						
							| 17 | 16 | a1i |  |-  ( ( ( A e. W /\ B e. W ) /\ f L g ) -> .~ Er W ) | 
						
							| 18 | 11 | simp3bi |  |-  ( f L g -> ( ( A ++ f ) ++ B ) .~ ( ( A ++ g ) ++ B ) ) | 
						
							| 19 | 18 | adantl |  |-  ( ( ( A e. W /\ B e. W ) /\ f L g ) -> ( ( A ++ f ) ++ B ) .~ ( ( A ++ g ) ++ B ) ) | 
						
							| 20 | 17 19 | ersym |  |-  ( ( ( A e. W /\ B e. W ) /\ f L g ) -> ( ( A ++ g ) ++ B ) .~ ( ( A ++ f ) ++ B ) ) | 
						
							| 21 | 1 2 3 4 5 6 7 | efgcpbllema |  |-  ( g L f <-> ( g e. W /\ f e. W /\ ( ( A ++ g ) ++ B ) .~ ( ( A ++ f ) ++ B ) ) ) | 
						
							| 22 | 13 15 20 21 | syl3anbrc |  |-  ( ( ( A e. W /\ B e. W ) /\ f L g ) -> g L f ) | 
						
							| 23 | 14 | ad2antrl |  |-  ( ( ( A e. W /\ B e. W ) /\ ( f L g /\ g L h ) ) -> f e. W ) | 
						
							| 24 | 1 2 3 4 5 6 7 | efgcpbllema |  |-  ( g L h <-> ( g e. W /\ h e. W /\ ( ( A ++ g ) ++ B ) .~ ( ( A ++ h ) ++ B ) ) ) | 
						
							| 25 | 24 | simp2bi |  |-  ( g L h -> h e. W ) | 
						
							| 26 | 25 | ad2antll |  |-  ( ( ( A e. W /\ B e. W ) /\ ( f L g /\ g L h ) ) -> h e. W ) | 
						
							| 27 | 16 | a1i |  |-  ( ( ( A e. W /\ B e. W ) /\ ( f L g /\ g L h ) ) -> .~ Er W ) | 
						
							| 28 | 18 | ad2antrl |  |-  ( ( ( A e. W /\ B e. W ) /\ ( f L g /\ g L h ) ) -> ( ( A ++ f ) ++ B ) .~ ( ( A ++ g ) ++ B ) ) | 
						
							| 29 | 24 | simp3bi |  |-  ( g L h -> ( ( A ++ g ) ++ B ) .~ ( ( A ++ h ) ++ B ) ) | 
						
							| 30 | 29 | ad2antll |  |-  ( ( ( A e. W /\ B e. W ) /\ ( f L g /\ g L h ) ) -> ( ( A ++ g ) ++ B ) .~ ( ( A ++ h ) ++ B ) ) | 
						
							| 31 | 27 28 30 | ertrd |  |-  ( ( ( A e. W /\ B e. W ) /\ ( f L g /\ g L h ) ) -> ( ( A ++ f ) ++ B ) .~ ( ( A ++ h ) ++ B ) ) | 
						
							| 32 | 1 2 3 4 5 6 7 | efgcpbllema |  |-  ( f L h <-> ( f e. W /\ h e. W /\ ( ( A ++ f ) ++ B ) .~ ( ( A ++ h ) ++ B ) ) ) | 
						
							| 33 | 23 26 31 32 | syl3anbrc |  |-  ( ( ( A e. W /\ B e. W ) /\ ( f L g /\ g L h ) ) -> f L h ) | 
						
							| 34 | 16 | a1i |  |-  ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> .~ Er W ) | 
						
							| 35 |  | fviss |  |-  ( _I ` Word ( I X. 2o ) ) C_ Word ( I X. 2o ) | 
						
							| 36 | 1 35 | eqsstri |  |-  W C_ Word ( I X. 2o ) | 
						
							| 37 |  | simpll |  |-  ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> A e. W ) | 
						
							| 38 | 36 37 | sselid |  |-  ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> A e. Word ( I X. 2o ) ) | 
						
							| 39 |  | simpr |  |-  ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> f e. W ) | 
						
							| 40 | 36 39 | sselid |  |-  ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> f e. Word ( I X. 2o ) ) | 
						
							| 41 |  | ccatcl |  |-  ( ( A e. Word ( I X. 2o ) /\ f e. Word ( I X. 2o ) ) -> ( A ++ f ) e. Word ( I X. 2o ) ) | 
						
							| 42 | 38 40 41 | syl2anc |  |-  ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> ( A ++ f ) e. Word ( I X. 2o ) ) | 
						
							| 43 |  | simplr |  |-  ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> B e. W ) | 
						
							| 44 | 36 43 | sselid |  |-  ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> B e. Word ( I X. 2o ) ) | 
						
							| 45 |  | ccatcl |  |-  ( ( ( A ++ f ) e. Word ( I X. 2o ) /\ B e. Word ( I X. 2o ) ) -> ( ( A ++ f ) ++ B ) e. Word ( I X. 2o ) ) | 
						
							| 46 | 42 44 45 | syl2anc |  |-  ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> ( ( A ++ f ) ++ B ) e. Word ( I X. 2o ) ) | 
						
							| 47 | 1 | efgrcl |  |-  ( A e. W -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) | 
						
							| 48 | 47 | simprd |  |-  ( A e. W -> W = Word ( I X. 2o ) ) | 
						
							| 49 | 48 | ad2antrr |  |-  ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> W = Word ( I X. 2o ) ) | 
						
							| 50 | 46 49 | eleqtrrd |  |-  ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> ( ( A ++ f ) ++ B ) e. W ) | 
						
							| 51 | 34 50 | erref |  |-  ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> ( ( A ++ f ) ++ B ) .~ ( ( A ++ f ) ++ B ) ) | 
						
							| 52 | 51 | ex |  |-  ( ( A e. W /\ B e. W ) -> ( f e. W -> ( ( A ++ f ) ++ B ) .~ ( ( A ++ f ) ++ B ) ) ) | 
						
							| 53 | 52 | pm4.71d |  |-  ( ( A e. W /\ B e. W ) -> ( f e. W <-> ( f e. W /\ ( ( A ++ f ) ++ B ) .~ ( ( A ++ f ) ++ B ) ) ) ) | 
						
							| 54 | 1 2 3 4 5 6 7 | efgcpbllema |  |-  ( f L f <-> ( f e. W /\ f e. W /\ ( ( A ++ f ) ++ B ) .~ ( ( A ++ f ) ++ B ) ) ) | 
						
							| 55 |  | df-3an |  |-  ( ( f e. W /\ f e. W /\ ( ( A ++ f ) ++ B ) .~ ( ( A ++ f ) ++ B ) ) <-> ( ( f e. W /\ f e. W ) /\ ( ( A ++ f ) ++ B ) .~ ( ( A ++ f ) ++ B ) ) ) | 
						
							| 56 |  | anidm |  |-  ( ( f e. W /\ f e. W ) <-> f e. W ) | 
						
							| 57 | 56 | anbi1i |  |-  ( ( ( f e. W /\ f e. W ) /\ ( ( A ++ f ) ++ B ) .~ ( ( A ++ f ) ++ B ) ) <-> ( f e. W /\ ( ( A ++ f ) ++ B ) .~ ( ( A ++ f ) ++ B ) ) ) | 
						
							| 58 | 54 55 57 | 3bitri |  |-  ( f L f <-> ( f e. W /\ ( ( A ++ f ) ++ B ) .~ ( ( A ++ f ) ++ B ) ) ) | 
						
							| 59 | 53 58 | bitr4di |  |-  ( ( A e. W /\ B e. W ) -> ( f e. W <-> f L f ) ) | 
						
							| 60 | 10 22 33 59 | iserd |  |-  ( ( A e. W /\ B e. W ) -> L Er W ) | 
						
							| 61 | 1 2 3 4 | efgtf |  |-  ( f e. W -> ( ( T ` f ) = ( a e. ( 0 ... ( # ` f ) ) , b e. ( I X. 2o ) |-> ( f splice <. a , a , <" b ( M ` b ) "> >. ) ) /\ ( T ` f ) : ( ( 0 ... ( # ` f ) ) X. ( I X. 2o ) ) --> W ) ) | 
						
							| 62 | 61 | simprd |  |-  ( f e. W -> ( T ` f ) : ( ( 0 ... ( # ` f ) ) X. ( I X. 2o ) ) --> W ) | 
						
							| 63 | 62 | adantl |  |-  ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> ( T ` f ) : ( ( 0 ... ( # ` f ) ) X. ( I X. 2o ) ) --> W ) | 
						
							| 64 |  | ffn |  |-  ( ( T ` f ) : ( ( 0 ... ( # ` f ) ) X. ( I X. 2o ) ) --> W -> ( T ` f ) Fn ( ( 0 ... ( # ` f ) ) X. ( I X. 2o ) ) ) | 
						
							| 65 |  | ovelrn |  |-  ( ( T ` f ) Fn ( ( 0 ... ( # ` f ) ) X. ( I X. 2o ) ) -> ( a e. ran ( T ` f ) <-> E. c e. ( 0 ... ( # ` f ) ) E. u e. ( I X. 2o ) a = ( c ( T ` f ) u ) ) ) | 
						
							| 66 | 63 64 65 | 3syl |  |-  ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> ( a e. ran ( T ` f ) <-> E. c e. ( 0 ... ( # ` f ) ) E. u e. ( I X. 2o ) a = ( c ( T ` f ) u ) ) ) | 
						
							| 67 |  | simplr |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> f e. W ) | 
						
							| 68 | 62 | ad2antlr |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( T ` f ) : ( ( 0 ... ( # ` f ) ) X. ( I X. 2o ) ) --> W ) | 
						
							| 69 |  | simprl |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> c e. ( 0 ... ( # ` f ) ) ) | 
						
							| 70 |  | simprr |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> u e. ( I X. 2o ) ) | 
						
							| 71 | 68 69 70 | fovcdmd |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( c ( T ` f ) u ) e. W ) | 
						
							| 72 | 50 | adantr |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( A ++ f ) ++ B ) e. W ) | 
						
							| 73 | 37 | adantr |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> A e. W ) | 
						
							| 74 | 36 73 | sselid |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> A e. Word ( I X. 2o ) ) | 
						
							| 75 | 40 | adantr |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> f e. Word ( I X. 2o ) ) | 
						
							| 76 |  | pfxcl |  |-  ( f e. Word ( I X. 2o ) -> ( f prefix c ) e. Word ( I X. 2o ) ) | 
						
							| 77 | 75 76 | syl |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( f prefix c ) e. Word ( I X. 2o ) ) | 
						
							| 78 |  | ccatcl |  |-  ( ( A e. Word ( I X. 2o ) /\ ( f prefix c ) e. Word ( I X. 2o ) ) -> ( A ++ ( f prefix c ) ) e. Word ( I X. 2o ) ) | 
						
							| 79 | 74 77 78 | syl2anc |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( A ++ ( f prefix c ) ) e. Word ( I X. 2o ) ) | 
						
							| 80 | 3 | efgmf |  |-  M : ( I X. 2o ) --> ( I X. 2o ) | 
						
							| 81 | 80 | ffvelcdmi |  |-  ( u e. ( I X. 2o ) -> ( M ` u ) e. ( I X. 2o ) ) | 
						
							| 82 | 81 | ad2antll |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( M ` u ) e. ( I X. 2o ) ) | 
						
							| 83 | 70 82 | s2cld |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> <" u ( M ` u ) "> e. Word ( I X. 2o ) ) | 
						
							| 84 |  | ccatcl |  |-  ( ( ( A ++ ( f prefix c ) ) e. Word ( I X. 2o ) /\ <" u ( M ` u ) "> e. Word ( I X. 2o ) ) -> ( ( A ++ ( f prefix c ) ) ++ <" u ( M ` u ) "> ) e. Word ( I X. 2o ) ) | 
						
							| 85 | 79 83 84 | syl2anc |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( A ++ ( f prefix c ) ) ++ <" u ( M ` u ) "> ) e. Word ( I X. 2o ) ) | 
						
							| 86 |  | swrdcl |  |-  ( f e. Word ( I X. 2o ) -> ( f substr <. c , ( # ` f ) >. ) e. Word ( I X. 2o ) ) | 
						
							| 87 | 75 86 | syl |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( f substr <. c , ( # ` f ) >. ) e. Word ( I X. 2o ) ) | 
						
							| 88 | 44 | adantr |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> B e. Word ( I X. 2o ) ) | 
						
							| 89 |  | ccatass |  |-  ( ( ( ( A ++ ( f prefix c ) ) ++ <" u ( M ` u ) "> ) e. Word ( I X. 2o ) /\ ( f substr <. c , ( # ` f ) >. ) e. Word ( I X. 2o ) /\ B e. Word ( I X. 2o ) ) -> ( ( ( ( A ++ ( f prefix c ) ) ++ <" u ( M ` u ) "> ) ++ ( f substr <. c , ( # ` f ) >. ) ) ++ B ) = ( ( ( A ++ ( f prefix c ) ) ++ <" u ( M ` u ) "> ) ++ ( ( f substr <. c , ( # ` f ) >. ) ++ B ) ) ) | 
						
							| 90 | 85 87 88 89 | syl3anc |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( ( ( A ++ ( f prefix c ) ) ++ <" u ( M ` u ) "> ) ++ ( f substr <. c , ( # ` f ) >. ) ) ++ B ) = ( ( ( A ++ ( f prefix c ) ) ++ <" u ( M ` u ) "> ) ++ ( ( f substr <. c , ( # ` f ) >. ) ++ B ) ) ) | 
						
							| 91 |  | ccatcl |  |-  ( ( ( f prefix c ) e. Word ( I X. 2o ) /\ <" u ( M ` u ) "> e. Word ( I X. 2o ) ) -> ( ( f prefix c ) ++ <" u ( M ` u ) "> ) e. Word ( I X. 2o ) ) | 
						
							| 92 | 77 83 91 | syl2anc |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( f prefix c ) ++ <" u ( M ` u ) "> ) e. Word ( I X. 2o ) ) | 
						
							| 93 |  | ccatass |  |-  ( ( A e. Word ( I X. 2o ) /\ ( ( f prefix c ) ++ <" u ( M ` u ) "> ) e. Word ( I X. 2o ) /\ ( f substr <. c , ( # ` f ) >. ) e. Word ( I X. 2o ) ) -> ( ( A ++ ( ( f prefix c ) ++ <" u ( M ` u ) "> ) ) ++ ( f substr <. c , ( # ` f ) >. ) ) = ( A ++ ( ( ( f prefix c ) ++ <" u ( M ` u ) "> ) ++ ( f substr <. c , ( # ` f ) >. ) ) ) ) | 
						
							| 94 | 74 92 87 93 | syl3anc |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( A ++ ( ( f prefix c ) ++ <" u ( M ` u ) "> ) ) ++ ( f substr <. c , ( # ` f ) >. ) ) = ( A ++ ( ( ( f prefix c ) ++ <" u ( M ` u ) "> ) ++ ( f substr <. c , ( # ` f ) >. ) ) ) ) | 
						
							| 95 |  | ccatass |  |-  ( ( A e. Word ( I X. 2o ) /\ ( f prefix c ) e. Word ( I X. 2o ) /\ <" u ( M ` u ) "> e. Word ( I X. 2o ) ) -> ( ( A ++ ( f prefix c ) ) ++ <" u ( M ` u ) "> ) = ( A ++ ( ( f prefix c ) ++ <" u ( M ` u ) "> ) ) ) | 
						
							| 96 | 74 77 83 95 | syl3anc |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( A ++ ( f prefix c ) ) ++ <" u ( M ` u ) "> ) = ( A ++ ( ( f prefix c ) ++ <" u ( M ` u ) "> ) ) ) | 
						
							| 97 | 96 | oveq1d |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( ( A ++ ( f prefix c ) ) ++ <" u ( M ` u ) "> ) ++ ( f substr <. c , ( # ` f ) >. ) ) = ( ( A ++ ( ( f prefix c ) ++ <" u ( M ` u ) "> ) ) ++ ( f substr <. c , ( # ` f ) >. ) ) ) | 
						
							| 98 | 1 2 3 4 | efgtval |  |-  ( ( f e. W /\ c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) -> ( c ( T ` f ) u ) = ( f splice <. c , c , <" u ( M ` u ) "> >. ) ) | 
						
							| 99 | 67 69 70 98 | syl3anc |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( c ( T ` f ) u ) = ( f splice <. c , c , <" u ( M ` u ) "> >. ) ) | 
						
							| 100 |  | splval |  |-  ( ( f e. W /\ ( c e. ( 0 ... ( # ` f ) ) /\ c e. ( 0 ... ( # ` f ) ) /\ <" u ( M ` u ) "> e. Word ( I X. 2o ) ) ) -> ( f splice <. c , c , <" u ( M ` u ) "> >. ) = ( ( ( f prefix c ) ++ <" u ( M ` u ) "> ) ++ ( f substr <. c , ( # ` f ) >. ) ) ) | 
						
							| 101 | 67 69 69 83 100 | syl13anc |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( f splice <. c , c , <" u ( M ` u ) "> >. ) = ( ( ( f prefix c ) ++ <" u ( M ` u ) "> ) ++ ( f substr <. c , ( # ` f ) >. ) ) ) | 
						
							| 102 | 99 101 | eqtrd |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( c ( T ` f ) u ) = ( ( ( f prefix c ) ++ <" u ( M ` u ) "> ) ++ ( f substr <. c , ( # ` f ) >. ) ) ) | 
						
							| 103 | 102 | oveq2d |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( A ++ ( c ( T ` f ) u ) ) = ( A ++ ( ( ( f prefix c ) ++ <" u ( M ` u ) "> ) ++ ( f substr <. c , ( # ` f ) >. ) ) ) ) | 
						
							| 104 | 94 97 103 | 3eqtr4rd |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( A ++ ( c ( T ` f ) u ) ) = ( ( ( A ++ ( f prefix c ) ) ++ <" u ( M ` u ) "> ) ++ ( f substr <. c , ( # ` f ) >. ) ) ) | 
						
							| 105 | 104 | oveq1d |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( A ++ ( c ( T ` f ) u ) ) ++ B ) = ( ( ( ( A ++ ( f prefix c ) ) ++ <" u ( M ` u ) "> ) ++ ( f substr <. c , ( # ` f ) >. ) ) ++ B ) ) | 
						
							| 106 |  | lencl |  |-  ( A e. Word ( I X. 2o ) -> ( # ` A ) e. NN0 ) | 
						
							| 107 | 74 106 | syl |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` A ) e. NN0 ) | 
						
							| 108 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 109 | 107 108 | eleqtrdi |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` A ) e. ( ZZ>= ` 0 ) ) | 
						
							| 110 |  | elfznn0 |  |-  ( c e. ( 0 ... ( # ` f ) ) -> c e. NN0 ) | 
						
							| 111 | 110 | ad2antrl |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> c e. NN0 ) | 
						
							| 112 |  | uzaddcl |  |-  ( ( ( # ` A ) e. ( ZZ>= ` 0 ) /\ c e. NN0 ) -> ( ( # ` A ) + c ) e. ( ZZ>= ` 0 ) ) | 
						
							| 113 | 109 111 112 | syl2anc |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( # ` A ) + c ) e. ( ZZ>= ` 0 ) ) | 
						
							| 114 | 42 | adantr |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( A ++ f ) e. Word ( I X. 2o ) ) | 
						
							| 115 |  | ccatlen |  |-  ( ( ( A ++ f ) e. Word ( I X. 2o ) /\ B e. Word ( I X. 2o ) ) -> ( # ` ( ( A ++ f ) ++ B ) ) = ( ( # ` ( A ++ f ) ) + ( # ` B ) ) ) | 
						
							| 116 | 114 88 115 | syl2anc |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` ( ( A ++ f ) ++ B ) ) = ( ( # ` ( A ++ f ) ) + ( # ` B ) ) ) | 
						
							| 117 |  | ccatlen |  |-  ( ( A e. Word ( I X. 2o ) /\ f e. Word ( I X. 2o ) ) -> ( # ` ( A ++ f ) ) = ( ( # ` A ) + ( # ` f ) ) ) | 
						
							| 118 | 74 75 117 | syl2anc |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` ( A ++ f ) ) = ( ( # ` A ) + ( # ` f ) ) ) | 
						
							| 119 |  | elfzuz3 |  |-  ( c e. ( 0 ... ( # ` f ) ) -> ( # ` f ) e. ( ZZ>= ` c ) ) | 
						
							| 120 | 119 | ad2antrl |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` f ) e. ( ZZ>= ` c ) ) | 
						
							| 121 | 107 | nn0zd |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` A ) e. ZZ ) | 
						
							| 122 |  | eluzadd |  |-  ( ( ( # ` f ) e. ( ZZ>= ` c ) /\ ( # ` A ) e. ZZ ) -> ( ( # ` f ) + ( # ` A ) ) e. ( ZZ>= ` ( c + ( # ` A ) ) ) ) | 
						
							| 123 | 120 121 122 | syl2anc |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( # ` f ) + ( # ` A ) ) e. ( ZZ>= ` ( c + ( # ` A ) ) ) ) | 
						
							| 124 |  | lencl |  |-  ( f e. Word ( I X. 2o ) -> ( # ` f ) e. NN0 ) | 
						
							| 125 | 75 124 | syl |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` f ) e. NN0 ) | 
						
							| 126 | 125 | nn0cnd |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` f ) e. CC ) | 
						
							| 127 | 107 | nn0cnd |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` A ) e. CC ) | 
						
							| 128 | 126 127 | addcomd |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( # ` f ) + ( # ` A ) ) = ( ( # ` A ) + ( # ` f ) ) ) | 
						
							| 129 | 111 | nn0cnd |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> c e. CC ) | 
						
							| 130 | 129 127 | addcomd |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( c + ( # ` A ) ) = ( ( # ` A ) + c ) ) | 
						
							| 131 | 130 | fveq2d |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ZZ>= ` ( c + ( # ` A ) ) ) = ( ZZ>= ` ( ( # ` A ) + c ) ) ) | 
						
							| 132 | 123 128 131 | 3eltr3d |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( # ` A ) + ( # ` f ) ) e. ( ZZ>= ` ( ( # ` A ) + c ) ) ) | 
						
							| 133 | 118 132 | eqeltrd |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` ( A ++ f ) ) e. ( ZZ>= ` ( ( # ` A ) + c ) ) ) | 
						
							| 134 |  | lencl |  |-  ( B e. Word ( I X. 2o ) -> ( # ` B ) e. NN0 ) | 
						
							| 135 | 88 134 | syl |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` B ) e. NN0 ) | 
						
							| 136 |  | uzaddcl |  |-  ( ( ( # ` ( A ++ f ) ) e. ( ZZ>= ` ( ( # ` A ) + c ) ) /\ ( # ` B ) e. NN0 ) -> ( ( # ` ( A ++ f ) ) + ( # ` B ) ) e. ( ZZ>= ` ( ( # ` A ) + c ) ) ) | 
						
							| 137 | 133 135 136 | syl2anc |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( # ` ( A ++ f ) ) + ( # ` B ) ) e. ( ZZ>= ` ( ( # ` A ) + c ) ) ) | 
						
							| 138 | 116 137 | eqeltrd |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` ( ( A ++ f ) ++ B ) ) e. ( ZZ>= ` ( ( # ` A ) + c ) ) ) | 
						
							| 139 |  | elfzuzb |  |-  ( ( ( # ` A ) + c ) e. ( 0 ... ( # ` ( ( A ++ f ) ++ B ) ) ) <-> ( ( ( # ` A ) + c ) e. ( ZZ>= ` 0 ) /\ ( # ` ( ( A ++ f ) ++ B ) ) e. ( ZZ>= ` ( ( # ` A ) + c ) ) ) ) | 
						
							| 140 | 113 138 139 | sylanbrc |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( # ` A ) + c ) e. ( 0 ... ( # ` ( ( A ++ f ) ++ B ) ) ) ) | 
						
							| 141 | 1 2 3 4 | efgtval |  |-  ( ( ( ( A ++ f ) ++ B ) e. W /\ ( ( # ` A ) + c ) e. ( 0 ... ( # ` ( ( A ++ f ) ++ B ) ) ) /\ u e. ( I X. 2o ) ) -> ( ( ( # ` A ) + c ) ( T ` ( ( A ++ f ) ++ B ) ) u ) = ( ( ( A ++ f ) ++ B ) splice <. ( ( # ` A ) + c ) , ( ( # ` A ) + c ) , <" u ( M ` u ) "> >. ) ) | 
						
							| 142 | 72 140 70 141 | syl3anc |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( ( # ` A ) + c ) ( T ` ( ( A ++ f ) ++ B ) ) u ) = ( ( ( A ++ f ) ++ B ) splice <. ( ( # ` A ) + c ) , ( ( # ` A ) + c ) , <" u ( M ` u ) "> >. ) ) | 
						
							| 143 |  | wrd0 |  |-  (/) e. Word ( I X. 2o ) | 
						
							| 144 | 143 | a1i |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> (/) e. Word ( I X. 2o ) ) | 
						
							| 145 |  | ccatcl |  |-  ( ( ( f substr <. c , ( # ` f ) >. ) e. Word ( I X. 2o ) /\ B e. Word ( I X. 2o ) ) -> ( ( f substr <. c , ( # ` f ) >. ) ++ B ) e. Word ( I X. 2o ) ) | 
						
							| 146 | 87 88 145 | syl2anc |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( f substr <. c , ( # ` f ) >. ) ++ B ) e. Word ( I X. 2o ) ) | 
						
							| 147 |  | ccatrid |  |-  ( ( A ++ ( f prefix c ) ) e. Word ( I X. 2o ) -> ( ( A ++ ( f prefix c ) ) ++ (/) ) = ( A ++ ( f prefix c ) ) ) | 
						
							| 148 | 79 147 | syl |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( A ++ ( f prefix c ) ) ++ (/) ) = ( A ++ ( f prefix c ) ) ) | 
						
							| 149 | 148 | oveq1d |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( ( A ++ ( f prefix c ) ) ++ (/) ) ++ ( ( f substr <. c , ( # ` f ) >. ) ++ B ) ) = ( ( A ++ ( f prefix c ) ) ++ ( ( f substr <. c , ( # ` f ) >. ) ++ B ) ) ) | 
						
							| 150 |  | ccatass |  |-  ( ( ( A ++ ( f prefix c ) ) e. Word ( I X. 2o ) /\ ( f substr <. c , ( # ` f ) >. ) e. Word ( I X. 2o ) /\ B e. Word ( I X. 2o ) ) -> ( ( ( A ++ ( f prefix c ) ) ++ ( f substr <. c , ( # ` f ) >. ) ) ++ B ) = ( ( A ++ ( f prefix c ) ) ++ ( ( f substr <. c , ( # ` f ) >. ) ++ B ) ) ) | 
						
							| 151 | 79 87 88 150 | syl3anc |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( ( A ++ ( f prefix c ) ) ++ ( f substr <. c , ( # ` f ) >. ) ) ++ B ) = ( ( A ++ ( f prefix c ) ) ++ ( ( f substr <. c , ( # ` f ) >. ) ++ B ) ) ) | 
						
							| 152 |  | ccatass |  |-  ( ( A e. Word ( I X. 2o ) /\ ( f prefix c ) e. Word ( I X. 2o ) /\ ( f substr <. c , ( # ` f ) >. ) e. Word ( I X. 2o ) ) -> ( ( A ++ ( f prefix c ) ) ++ ( f substr <. c , ( # ` f ) >. ) ) = ( A ++ ( ( f prefix c ) ++ ( f substr <. c , ( # ` f ) >. ) ) ) ) | 
						
							| 153 | 74 77 87 152 | syl3anc |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( A ++ ( f prefix c ) ) ++ ( f substr <. c , ( # ` f ) >. ) ) = ( A ++ ( ( f prefix c ) ++ ( f substr <. c , ( # ` f ) >. ) ) ) ) | 
						
							| 154 | 125 108 | eleqtrdi |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` f ) e. ( ZZ>= ` 0 ) ) | 
						
							| 155 |  | eluzfz2 |  |-  ( ( # ` f ) e. ( ZZ>= ` 0 ) -> ( # ` f ) e. ( 0 ... ( # ` f ) ) ) | 
						
							| 156 | 154 155 | syl |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` f ) e. ( 0 ... ( # ` f ) ) ) | 
						
							| 157 |  | ccatpfx |  |-  ( ( f e. Word ( I X. 2o ) /\ c e. ( 0 ... ( # ` f ) ) /\ ( # ` f ) e. ( 0 ... ( # ` f ) ) ) -> ( ( f prefix c ) ++ ( f substr <. c , ( # ` f ) >. ) ) = ( f prefix ( # ` f ) ) ) | 
						
							| 158 | 75 69 156 157 | syl3anc |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( f prefix c ) ++ ( f substr <. c , ( # ` f ) >. ) ) = ( f prefix ( # ` f ) ) ) | 
						
							| 159 |  | pfxid |  |-  ( f e. Word ( I X. 2o ) -> ( f prefix ( # ` f ) ) = f ) | 
						
							| 160 | 75 159 | syl |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( f prefix ( # ` f ) ) = f ) | 
						
							| 161 | 158 160 | eqtrd |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( f prefix c ) ++ ( f substr <. c , ( # ` f ) >. ) ) = f ) | 
						
							| 162 | 161 | oveq2d |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( A ++ ( ( f prefix c ) ++ ( f substr <. c , ( # ` f ) >. ) ) ) = ( A ++ f ) ) | 
						
							| 163 | 153 162 | eqtrd |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( A ++ ( f prefix c ) ) ++ ( f substr <. c , ( # ` f ) >. ) ) = ( A ++ f ) ) | 
						
							| 164 | 163 | oveq1d |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( ( A ++ ( f prefix c ) ) ++ ( f substr <. c , ( # ` f ) >. ) ) ++ B ) = ( ( A ++ f ) ++ B ) ) | 
						
							| 165 | 149 151 164 | 3eqtr2rd |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( A ++ f ) ++ B ) = ( ( ( A ++ ( f prefix c ) ) ++ (/) ) ++ ( ( f substr <. c , ( # ` f ) >. ) ++ B ) ) ) | 
						
							| 166 |  | ccatlen |  |-  ( ( A e. Word ( I X. 2o ) /\ ( f prefix c ) e. Word ( I X. 2o ) ) -> ( # ` ( A ++ ( f prefix c ) ) ) = ( ( # ` A ) + ( # ` ( f prefix c ) ) ) ) | 
						
							| 167 | 74 77 166 | syl2anc |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` ( A ++ ( f prefix c ) ) ) = ( ( # ` A ) + ( # ` ( f prefix c ) ) ) ) | 
						
							| 168 |  | pfxlen |  |-  ( ( f e. Word ( I X. 2o ) /\ c e. ( 0 ... ( # ` f ) ) ) -> ( # ` ( f prefix c ) ) = c ) | 
						
							| 169 | 75 69 168 | syl2anc |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( # ` ( f prefix c ) ) = c ) | 
						
							| 170 | 169 | oveq2d |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( # ` A ) + ( # ` ( f prefix c ) ) ) = ( ( # ` A ) + c ) ) | 
						
							| 171 | 167 170 | eqtr2d |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( # ` A ) + c ) = ( # ` ( A ++ ( f prefix c ) ) ) ) | 
						
							| 172 |  | hash0 |  |-  ( # ` (/) ) = 0 | 
						
							| 173 | 172 | oveq2i |  |-  ( ( ( # ` A ) + c ) + ( # ` (/) ) ) = ( ( ( # ` A ) + c ) + 0 ) | 
						
							| 174 | 107 111 | nn0addcld |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( # ` A ) + c ) e. NN0 ) | 
						
							| 175 | 174 | nn0cnd |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( # ` A ) + c ) e. CC ) | 
						
							| 176 | 175 | addridd |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( ( # ` A ) + c ) + 0 ) = ( ( # ` A ) + c ) ) | 
						
							| 177 | 173 176 | eqtr2id |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( # ` A ) + c ) = ( ( ( # ` A ) + c ) + ( # ` (/) ) ) ) | 
						
							| 178 | 79 144 146 83 165 171 177 | splval2 |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( ( A ++ f ) ++ B ) splice <. ( ( # ` A ) + c ) , ( ( # ` A ) + c ) , <" u ( M ` u ) "> >. ) = ( ( ( A ++ ( f prefix c ) ) ++ <" u ( M ` u ) "> ) ++ ( ( f substr <. c , ( # ` f ) >. ) ++ B ) ) ) | 
						
							| 179 | 142 178 | eqtrd |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( ( # ` A ) + c ) ( T ` ( ( A ++ f ) ++ B ) ) u ) = ( ( ( A ++ ( f prefix c ) ) ++ <" u ( M ` u ) "> ) ++ ( ( f substr <. c , ( # ` f ) >. ) ++ B ) ) ) | 
						
							| 180 | 90 105 179 | 3eqtr4d |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( A ++ ( c ( T ` f ) u ) ) ++ B ) = ( ( ( # ` A ) + c ) ( T ` ( ( A ++ f ) ++ B ) ) u ) ) | 
						
							| 181 | 1 2 3 4 | efgtf |  |-  ( ( ( A ++ f ) ++ B ) e. W -> ( ( T ` ( ( A ++ f ) ++ B ) ) = ( a e. ( 0 ... ( # ` ( ( A ++ f ) ++ B ) ) ) , b e. ( I X. 2o ) |-> ( ( ( A ++ f ) ++ B ) splice <. a , a , <" b ( M ` b ) "> >. ) ) /\ ( T ` ( ( A ++ f ) ++ B ) ) : ( ( 0 ... ( # ` ( ( A ++ f ) ++ B ) ) ) X. ( I X. 2o ) ) --> W ) ) | 
						
							| 182 | 181 | simprd |  |-  ( ( ( A ++ f ) ++ B ) e. W -> ( T ` ( ( A ++ f ) ++ B ) ) : ( ( 0 ... ( # ` ( ( A ++ f ) ++ B ) ) ) X. ( I X. 2o ) ) --> W ) | 
						
							| 183 |  | ffn |  |-  ( ( T ` ( ( A ++ f ) ++ B ) ) : ( ( 0 ... ( # ` ( ( A ++ f ) ++ B ) ) ) X. ( I X. 2o ) ) --> W -> ( T ` ( ( A ++ f ) ++ B ) ) Fn ( ( 0 ... ( # ` ( ( A ++ f ) ++ B ) ) ) X. ( I X. 2o ) ) ) | 
						
							| 184 | 72 182 183 | 3syl |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( T ` ( ( A ++ f ) ++ B ) ) Fn ( ( 0 ... ( # ` ( ( A ++ f ) ++ B ) ) ) X. ( I X. 2o ) ) ) | 
						
							| 185 |  | fnovrn |  |-  ( ( ( T ` ( ( A ++ f ) ++ B ) ) Fn ( ( 0 ... ( # ` ( ( A ++ f ) ++ B ) ) ) X. ( I X. 2o ) ) /\ ( ( # ` A ) + c ) e. ( 0 ... ( # ` ( ( A ++ f ) ++ B ) ) ) /\ u e. ( I X. 2o ) ) -> ( ( ( # ` A ) + c ) ( T ` ( ( A ++ f ) ++ B ) ) u ) e. ran ( T ` ( ( A ++ f ) ++ B ) ) ) | 
						
							| 186 | 184 140 70 185 | syl3anc |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( ( # ` A ) + c ) ( T ` ( ( A ++ f ) ++ B ) ) u ) e. ran ( T ` ( ( A ++ f ) ++ B ) ) ) | 
						
							| 187 | 180 186 | eqeltrd |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( A ++ ( c ( T ` f ) u ) ) ++ B ) e. ran ( T ` ( ( A ++ f ) ++ B ) ) ) | 
						
							| 188 | 1 2 3 4 | efgi2 |  |-  ( ( ( ( A ++ f ) ++ B ) e. W /\ ( ( A ++ ( c ( T ` f ) u ) ) ++ B ) e. ran ( T ` ( ( A ++ f ) ++ B ) ) ) -> ( ( A ++ f ) ++ B ) .~ ( ( A ++ ( c ( T ` f ) u ) ) ++ B ) ) | 
						
							| 189 | 72 187 188 | syl2anc |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( ( A ++ f ) ++ B ) .~ ( ( A ++ ( c ( T ` f ) u ) ) ++ B ) ) | 
						
							| 190 | 1 2 3 4 5 6 7 | efgcpbllema |  |-  ( f L ( c ( T ` f ) u ) <-> ( f e. W /\ ( c ( T ` f ) u ) e. W /\ ( ( A ++ f ) ++ B ) .~ ( ( A ++ ( c ( T ` f ) u ) ) ++ B ) ) ) | 
						
							| 191 | 67 71 189 190 | syl3anbrc |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> f L ( c ( T ` f ) u ) ) | 
						
							| 192 |  | vex |  |-  a e. _V | 
						
							| 193 |  | vex |  |-  f e. _V | 
						
							| 194 | 192 193 | elec |  |-  ( a e. [ f ] L <-> f L a ) | 
						
							| 195 |  | breq2 |  |-  ( a = ( c ( T ` f ) u ) -> ( f L a <-> f L ( c ( T ` f ) u ) ) ) | 
						
							| 196 | 194 195 | bitrid |  |-  ( a = ( c ( T ` f ) u ) -> ( a e. [ f ] L <-> f L ( c ( T ` f ) u ) ) ) | 
						
							| 197 | 191 196 | syl5ibrcom |  |-  ( ( ( ( A e. W /\ B e. W ) /\ f e. W ) /\ ( c e. ( 0 ... ( # ` f ) ) /\ u e. ( I X. 2o ) ) ) -> ( a = ( c ( T ` f ) u ) -> a e. [ f ] L ) ) | 
						
							| 198 | 197 | rexlimdvva |  |-  ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> ( E. c e. ( 0 ... ( # ` f ) ) E. u e. ( I X. 2o ) a = ( c ( T ` f ) u ) -> a e. [ f ] L ) ) | 
						
							| 199 | 66 198 | sylbid |  |-  ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> ( a e. ran ( T ` f ) -> a e. [ f ] L ) ) | 
						
							| 200 | 199 | ssrdv |  |-  ( ( ( A e. W /\ B e. W ) /\ f e. W ) -> ran ( T ` f ) C_ [ f ] L ) | 
						
							| 201 | 200 | ralrimiva |  |-  ( ( A e. W /\ B e. W ) -> A. f e. W ran ( T ` f ) C_ [ f ] L ) | 
						
							| 202 | 1 | fvexi |  |-  W e. _V | 
						
							| 203 |  | erex |  |-  ( L Er W -> ( W e. _V -> L e. _V ) ) | 
						
							| 204 | 60 202 203 | mpisyl |  |-  ( ( A e. W /\ B e. W ) -> L e. _V ) | 
						
							| 205 |  | ereq1 |  |-  ( r = L -> ( r Er W <-> L Er W ) ) | 
						
							| 206 |  | eceq2 |  |-  ( r = L -> [ f ] r = [ f ] L ) | 
						
							| 207 | 206 | sseq2d |  |-  ( r = L -> ( ran ( T ` f ) C_ [ f ] r <-> ran ( T ` f ) C_ [ f ] L ) ) | 
						
							| 208 | 207 | ralbidv |  |-  ( r = L -> ( A. f e. W ran ( T ` f ) C_ [ f ] r <-> A. f e. W ran ( T ` f ) C_ [ f ] L ) ) | 
						
							| 209 | 205 208 | anbi12d |  |-  ( r = L -> ( ( r Er W /\ A. f e. W ran ( T ` f ) C_ [ f ] r ) <-> ( L Er W /\ A. f e. W ran ( T ` f ) C_ [ f ] L ) ) ) | 
						
							| 210 | 209 | elabg |  |-  ( L e. _V -> ( L e. { r | ( r Er W /\ A. f e. W ran ( T ` f ) C_ [ f ] r ) } <-> ( L Er W /\ A. f e. W ran ( T ` f ) C_ [ f ] L ) ) ) | 
						
							| 211 | 204 210 | syl |  |-  ( ( A e. W /\ B e. W ) -> ( L e. { r | ( r Er W /\ A. f e. W ran ( T ` f ) C_ [ f ] r ) } <-> ( L Er W /\ A. f e. W ran ( T ` f ) C_ [ f ] L ) ) ) | 
						
							| 212 | 60 201 211 | mpbir2and |  |-  ( ( A e. W /\ B e. W ) -> L e. { r | ( r Er W /\ A. f e. W ran ( T ` f ) C_ [ f ] r ) } ) | 
						
							| 213 |  | intss1 |  |-  ( L e. { r | ( r Er W /\ A. f e. W ran ( T ` f ) C_ [ f ] r ) } -> |^| { r | ( r Er W /\ A. f e. W ran ( T ` f ) C_ [ f ] r ) } C_ L ) | 
						
							| 214 | 212 213 | syl |  |-  ( ( A e. W /\ B e. W ) -> |^| { r | ( r Er W /\ A. f e. W ran ( T ` f ) C_ [ f ] r ) } C_ L ) | 
						
							| 215 | 8 214 | eqsstrid |  |-  ( ( A e. W /\ B e. W ) -> .~ C_ L ) |