| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efgh.1 |
|- F = ( x e. X |-> ( exp ` ( A x. x ) ) ) |
| 2 |
|
simp1l |
|- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> A e. CC ) |
| 3 |
|
simp1r |
|- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> X e. ( SubGrp ` CCfld ) ) |
| 4 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 5 |
4
|
subgss |
|- ( X e. ( SubGrp ` CCfld ) -> X C_ CC ) |
| 6 |
3 5
|
syl |
|- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> X C_ CC ) |
| 7 |
|
simp2 |
|- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> B e. X ) |
| 8 |
6 7
|
sseldd |
|- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> B e. CC ) |
| 9 |
|
simp3 |
|- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> C e. X ) |
| 10 |
6 9
|
sseldd |
|- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> C e. CC ) |
| 11 |
2 8 10
|
adddid |
|- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( A x. ( B + C ) ) = ( ( A x. B ) + ( A x. C ) ) ) |
| 12 |
11
|
fveq2d |
|- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( exp ` ( A x. ( B + C ) ) ) = ( exp ` ( ( A x. B ) + ( A x. C ) ) ) ) |
| 13 |
2 8
|
mulcld |
|- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( A x. B ) e. CC ) |
| 14 |
2 10
|
mulcld |
|- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( A x. C ) e. CC ) |
| 15 |
|
efadd |
|- ( ( ( A x. B ) e. CC /\ ( A x. C ) e. CC ) -> ( exp ` ( ( A x. B ) + ( A x. C ) ) ) = ( ( exp ` ( A x. B ) ) x. ( exp ` ( A x. C ) ) ) ) |
| 16 |
13 14 15
|
syl2anc |
|- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( exp ` ( ( A x. B ) + ( A x. C ) ) ) = ( ( exp ` ( A x. B ) ) x. ( exp ` ( A x. C ) ) ) ) |
| 17 |
12 16
|
eqtrd |
|- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( exp ` ( A x. ( B + C ) ) ) = ( ( exp ` ( A x. B ) ) x. ( exp ` ( A x. C ) ) ) ) |
| 18 |
|
oveq2 |
|- ( x = y -> ( A x. x ) = ( A x. y ) ) |
| 19 |
18
|
fveq2d |
|- ( x = y -> ( exp ` ( A x. x ) ) = ( exp ` ( A x. y ) ) ) |
| 20 |
19
|
cbvmptv |
|- ( x e. X |-> ( exp ` ( A x. x ) ) ) = ( y e. X |-> ( exp ` ( A x. y ) ) ) |
| 21 |
1 20
|
eqtri |
|- F = ( y e. X |-> ( exp ` ( A x. y ) ) ) |
| 22 |
|
oveq2 |
|- ( y = ( B + C ) -> ( A x. y ) = ( A x. ( B + C ) ) ) |
| 23 |
22
|
fveq2d |
|- ( y = ( B + C ) -> ( exp ` ( A x. y ) ) = ( exp ` ( A x. ( B + C ) ) ) ) |
| 24 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
| 25 |
24
|
subgcl |
|- ( ( X e. ( SubGrp ` CCfld ) /\ B e. X /\ C e. X ) -> ( B + C ) e. X ) |
| 26 |
25
|
3adant1l |
|- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( B + C ) e. X ) |
| 27 |
|
fvexd |
|- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( exp ` ( A x. ( B + C ) ) ) e. _V ) |
| 28 |
21 23 26 27
|
fvmptd3 |
|- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( F ` ( B + C ) ) = ( exp ` ( A x. ( B + C ) ) ) ) |
| 29 |
|
oveq2 |
|- ( y = B -> ( A x. y ) = ( A x. B ) ) |
| 30 |
29
|
fveq2d |
|- ( y = B -> ( exp ` ( A x. y ) ) = ( exp ` ( A x. B ) ) ) |
| 31 |
|
fvexd |
|- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( exp ` ( A x. B ) ) e. _V ) |
| 32 |
21 30 7 31
|
fvmptd3 |
|- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( F ` B ) = ( exp ` ( A x. B ) ) ) |
| 33 |
|
oveq2 |
|- ( y = C -> ( A x. y ) = ( A x. C ) ) |
| 34 |
33
|
fveq2d |
|- ( y = C -> ( exp ` ( A x. y ) ) = ( exp ` ( A x. C ) ) ) |
| 35 |
|
fvexd |
|- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( exp ` ( A x. C ) ) e. _V ) |
| 36 |
21 34 9 35
|
fvmptd3 |
|- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( F ` C ) = ( exp ` ( A x. C ) ) ) |
| 37 |
32 36
|
oveq12d |
|- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( ( F ` B ) x. ( F ` C ) ) = ( ( exp ` ( A x. B ) ) x. ( exp ` ( A x. C ) ) ) ) |
| 38 |
17 28 37
|
3eqtr4d |
|- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( F ` ( B + C ) ) = ( ( F ` B ) x. ( F ` C ) ) ) |