| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgval.w |  |-  W = ( _I ` Word ( I X. 2o ) ) | 
						
							| 2 |  | efgval.r |  |-  .~ = ( ~FG ` I ) | 
						
							| 3 |  | fveq2 |  |-  ( u = A -> ( # ` u ) = ( # ` A ) ) | 
						
							| 4 | 3 | oveq2d |  |-  ( u = A -> ( 0 ... ( # ` u ) ) = ( 0 ... ( # ` A ) ) ) | 
						
							| 5 |  | id |  |-  ( u = A -> u = A ) | 
						
							| 6 |  | oveq1 |  |-  ( u = A -> ( u splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) = ( A splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) | 
						
							| 7 | 5 6 | breq12d |  |-  ( u = A -> ( u r ( u splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) <-> A r ( A splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) ) | 
						
							| 8 | 7 | 2ralbidv |  |-  ( u = A -> ( A. a e. I A. b e. 2o u r ( u splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) <-> A. a e. I A. b e. 2o A r ( A splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) ) | 
						
							| 9 | 4 8 | raleqbidv |  |-  ( u = A -> ( A. i e. ( 0 ... ( # ` u ) ) A. a e. I A. b e. 2o u r ( u splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) <-> A. i e. ( 0 ... ( # ` A ) ) A. a e. I A. b e. 2o A r ( A splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) ) | 
						
							| 10 | 9 | rspcv |  |-  ( A e. W -> ( A. u e. W A. i e. ( 0 ... ( # ` u ) ) A. a e. I A. b e. 2o u r ( u splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) -> A. i e. ( 0 ... ( # ` A ) ) A. a e. I A. b e. 2o A r ( A splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) ) | 
						
							| 11 |  | oteq1 |  |-  ( i = N -> <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. = <. N , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) | 
						
							| 12 |  | oteq2 |  |-  ( i = N -> <. N , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. = <. N , N , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) | 
						
							| 13 | 11 12 | eqtrd |  |-  ( i = N -> <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. = <. N , N , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) | 
						
							| 14 | 13 | oveq2d |  |-  ( i = N -> ( A splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) = ( A splice <. N , N , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) | 
						
							| 15 | 14 | breq2d |  |-  ( i = N -> ( A r ( A splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) <-> A r ( A splice <. N , N , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) ) | 
						
							| 16 | 15 | 2ralbidv |  |-  ( i = N -> ( A. a e. I A. b e. 2o A r ( A splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) <-> A. a e. I A. b e. 2o A r ( A splice <. N , N , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) ) | 
						
							| 17 | 16 | rspcv |  |-  ( N e. ( 0 ... ( # ` A ) ) -> ( A. i e. ( 0 ... ( # ` A ) ) A. a e. I A. b e. 2o A r ( A splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) -> A. a e. I A. b e. 2o A r ( A splice <. N , N , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) ) | 
						
							| 18 | 10 17 | sylan9 |  |-  ( ( A e. W /\ N e. ( 0 ... ( # ` A ) ) ) -> ( A. u e. W A. i e. ( 0 ... ( # ` u ) ) A. a e. I A. b e. 2o u r ( u splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) -> A. a e. I A. b e. 2o A r ( A splice <. N , N , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) ) | 
						
							| 19 |  | opeq1 |  |-  ( a = J -> <. a , b >. = <. J , b >. ) | 
						
							| 20 |  | opeq1 |  |-  ( a = J -> <. a , ( 1o \ b ) >. = <. J , ( 1o \ b ) >. ) | 
						
							| 21 | 19 20 | s2eqd |  |-  ( a = J -> <" <. a , b >. <. a , ( 1o \ b ) >. "> = <" <. J , b >. <. J , ( 1o \ b ) >. "> ) | 
						
							| 22 | 21 | oteq3d |  |-  ( a = J -> <. N , N , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. = <. N , N , <" <. J , b >. <. J , ( 1o \ b ) >. "> >. ) | 
						
							| 23 | 22 | oveq2d |  |-  ( a = J -> ( A splice <. N , N , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) = ( A splice <. N , N , <" <. J , b >. <. J , ( 1o \ b ) >. "> >. ) ) | 
						
							| 24 | 23 | breq2d |  |-  ( a = J -> ( A r ( A splice <. N , N , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) <-> A r ( A splice <. N , N , <" <. J , b >. <. J , ( 1o \ b ) >. "> >. ) ) ) | 
						
							| 25 |  | opeq2 |  |-  ( b = K -> <. J , b >. = <. J , K >. ) | 
						
							| 26 |  | difeq2 |  |-  ( b = K -> ( 1o \ b ) = ( 1o \ K ) ) | 
						
							| 27 | 26 | opeq2d |  |-  ( b = K -> <. J , ( 1o \ b ) >. = <. J , ( 1o \ K ) >. ) | 
						
							| 28 | 25 27 | s2eqd |  |-  ( b = K -> <" <. J , b >. <. J , ( 1o \ b ) >. "> = <" <. J , K >. <. J , ( 1o \ K ) >. "> ) | 
						
							| 29 | 28 | oteq3d |  |-  ( b = K -> <. N , N , <" <. J , b >. <. J , ( 1o \ b ) >. "> >. = <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) | 
						
							| 30 | 29 | oveq2d |  |-  ( b = K -> ( A splice <. N , N , <" <. J , b >. <. J , ( 1o \ b ) >. "> >. ) = ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) ) | 
						
							| 31 | 30 | breq2d |  |-  ( b = K -> ( A r ( A splice <. N , N , <" <. J , b >. <. J , ( 1o \ b ) >. "> >. ) <-> A r ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) ) ) | 
						
							| 32 |  | df-br |  |-  ( A r ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) <-> <. A , ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) >. e. r ) | 
						
							| 33 | 31 32 | bitrdi |  |-  ( b = K -> ( A r ( A splice <. N , N , <" <. J , b >. <. J , ( 1o \ b ) >. "> >. ) <-> <. A , ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) >. e. r ) ) | 
						
							| 34 | 24 33 | rspc2v |  |-  ( ( J e. I /\ K e. 2o ) -> ( A. a e. I A. b e. 2o A r ( A splice <. N , N , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) -> <. A , ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) >. e. r ) ) | 
						
							| 35 | 18 34 | sylan9 |  |-  ( ( ( A e. W /\ N e. ( 0 ... ( # ` A ) ) ) /\ ( J e. I /\ K e. 2o ) ) -> ( A. u e. W A. i e. ( 0 ... ( # ` u ) ) A. a e. I A. b e. 2o u r ( u splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) -> <. A , ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) >. e. r ) ) | 
						
							| 36 | 35 | adantld |  |-  ( ( ( A e. W /\ N e. ( 0 ... ( # ` A ) ) ) /\ ( J e. I /\ K e. 2o ) ) -> ( ( r Er W /\ A. u e. W A. i e. ( 0 ... ( # ` u ) ) A. a e. I A. b e. 2o u r ( u splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) -> <. A , ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) >. e. r ) ) | 
						
							| 37 | 36 | alrimiv |  |-  ( ( ( A e. W /\ N e. ( 0 ... ( # ` A ) ) ) /\ ( J e. I /\ K e. 2o ) ) -> A. r ( ( r Er W /\ A. u e. W A. i e. ( 0 ... ( # ` u ) ) A. a e. I A. b e. 2o u r ( u splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) -> <. A , ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) >. e. r ) ) | 
						
							| 38 |  | opex |  |-  <. A , ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) >. e. _V | 
						
							| 39 | 38 | elintab |  |-  ( <. A , ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) >. e. |^| { r | ( r Er W /\ A. u e. W A. i e. ( 0 ... ( # ` u ) ) A. a e. I A. b e. 2o u r ( u splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) } <-> A. r ( ( r Er W /\ A. u e. W A. i e. ( 0 ... ( # ` u ) ) A. a e. I A. b e. 2o u r ( u splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) -> <. A , ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) >. e. r ) ) | 
						
							| 40 | 37 39 | sylibr |  |-  ( ( ( A e. W /\ N e. ( 0 ... ( # ` A ) ) ) /\ ( J e. I /\ K e. 2o ) ) -> <. A , ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) >. e. |^| { r | ( r Er W /\ A. u e. W A. i e. ( 0 ... ( # ` u ) ) A. a e. I A. b e. 2o u r ( u splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) } ) | 
						
							| 41 | 1 2 | efgval |  |-  .~ = |^| { r | ( r Er W /\ A. u e. W A. i e. ( 0 ... ( # ` u ) ) A. a e. I A. b e. 2o u r ( u splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) } | 
						
							| 42 | 40 41 | eleqtrrdi |  |-  ( ( ( A e. W /\ N e. ( 0 ... ( # ` A ) ) ) /\ ( J e. I /\ K e. 2o ) ) -> <. A , ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) >. e. .~ ) | 
						
							| 43 |  | df-br |  |-  ( A .~ ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) <-> <. A , ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) >. e. .~ ) | 
						
							| 44 | 42 43 | sylibr |  |-  ( ( ( A e. W /\ N e. ( 0 ... ( # ` A ) ) ) /\ ( J e. I /\ K e. 2o ) ) -> A .~ ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) ) |