Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
|- W = ( _I ` Word ( I X. 2o ) ) |
2 |
|
efgval.r |
|- .~ = ( ~FG ` I ) |
3 |
|
fveq2 |
|- ( u = A -> ( # ` u ) = ( # ` A ) ) |
4 |
3
|
oveq2d |
|- ( u = A -> ( 0 ... ( # ` u ) ) = ( 0 ... ( # ` A ) ) ) |
5 |
|
id |
|- ( u = A -> u = A ) |
6 |
|
oveq1 |
|- ( u = A -> ( u splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) = ( A splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) |
7 |
5 6
|
breq12d |
|- ( u = A -> ( u r ( u splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) <-> A r ( A splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) ) |
8 |
7
|
2ralbidv |
|- ( u = A -> ( A. a e. I A. b e. 2o u r ( u splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) <-> A. a e. I A. b e. 2o A r ( A splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) ) |
9 |
4 8
|
raleqbidv |
|- ( u = A -> ( A. i e. ( 0 ... ( # ` u ) ) A. a e. I A. b e. 2o u r ( u splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) <-> A. i e. ( 0 ... ( # ` A ) ) A. a e. I A. b e. 2o A r ( A splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) ) |
10 |
9
|
rspcv |
|- ( A e. W -> ( A. u e. W A. i e. ( 0 ... ( # ` u ) ) A. a e. I A. b e. 2o u r ( u splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) -> A. i e. ( 0 ... ( # ` A ) ) A. a e. I A. b e. 2o A r ( A splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) ) |
11 |
|
oteq1 |
|- ( i = N -> <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. = <. N , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) |
12 |
|
oteq2 |
|- ( i = N -> <. N , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. = <. N , N , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) |
13 |
11 12
|
eqtrd |
|- ( i = N -> <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. = <. N , N , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) |
14 |
13
|
oveq2d |
|- ( i = N -> ( A splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) = ( A splice <. N , N , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) |
15 |
14
|
breq2d |
|- ( i = N -> ( A r ( A splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) <-> A r ( A splice <. N , N , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) ) |
16 |
15
|
2ralbidv |
|- ( i = N -> ( A. a e. I A. b e. 2o A r ( A splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) <-> A. a e. I A. b e. 2o A r ( A splice <. N , N , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) ) |
17 |
16
|
rspcv |
|- ( N e. ( 0 ... ( # ` A ) ) -> ( A. i e. ( 0 ... ( # ` A ) ) A. a e. I A. b e. 2o A r ( A splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) -> A. a e. I A. b e. 2o A r ( A splice <. N , N , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) ) |
18 |
10 17
|
sylan9 |
|- ( ( A e. W /\ N e. ( 0 ... ( # ` A ) ) ) -> ( A. u e. W A. i e. ( 0 ... ( # ` u ) ) A. a e. I A. b e. 2o u r ( u splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) -> A. a e. I A. b e. 2o A r ( A splice <. N , N , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) ) |
19 |
|
opeq1 |
|- ( a = J -> <. a , b >. = <. J , b >. ) |
20 |
|
opeq1 |
|- ( a = J -> <. a , ( 1o \ b ) >. = <. J , ( 1o \ b ) >. ) |
21 |
19 20
|
s2eqd |
|- ( a = J -> <" <. a , b >. <. a , ( 1o \ b ) >. "> = <" <. J , b >. <. J , ( 1o \ b ) >. "> ) |
22 |
21
|
oteq3d |
|- ( a = J -> <. N , N , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. = <. N , N , <" <. J , b >. <. J , ( 1o \ b ) >. "> >. ) |
23 |
22
|
oveq2d |
|- ( a = J -> ( A splice <. N , N , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) = ( A splice <. N , N , <" <. J , b >. <. J , ( 1o \ b ) >. "> >. ) ) |
24 |
23
|
breq2d |
|- ( a = J -> ( A r ( A splice <. N , N , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) <-> A r ( A splice <. N , N , <" <. J , b >. <. J , ( 1o \ b ) >. "> >. ) ) ) |
25 |
|
opeq2 |
|- ( b = K -> <. J , b >. = <. J , K >. ) |
26 |
|
difeq2 |
|- ( b = K -> ( 1o \ b ) = ( 1o \ K ) ) |
27 |
26
|
opeq2d |
|- ( b = K -> <. J , ( 1o \ b ) >. = <. J , ( 1o \ K ) >. ) |
28 |
25 27
|
s2eqd |
|- ( b = K -> <" <. J , b >. <. J , ( 1o \ b ) >. "> = <" <. J , K >. <. J , ( 1o \ K ) >. "> ) |
29 |
28
|
oteq3d |
|- ( b = K -> <. N , N , <" <. J , b >. <. J , ( 1o \ b ) >. "> >. = <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) |
30 |
29
|
oveq2d |
|- ( b = K -> ( A splice <. N , N , <" <. J , b >. <. J , ( 1o \ b ) >. "> >. ) = ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) ) |
31 |
30
|
breq2d |
|- ( b = K -> ( A r ( A splice <. N , N , <" <. J , b >. <. J , ( 1o \ b ) >. "> >. ) <-> A r ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) ) ) |
32 |
|
df-br |
|- ( A r ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) <-> <. A , ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) >. e. r ) |
33 |
31 32
|
bitrdi |
|- ( b = K -> ( A r ( A splice <. N , N , <" <. J , b >. <. J , ( 1o \ b ) >. "> >. ) <-> <. A , ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) >. e. r ) ) |
34 |
24 33
|
rspc2v |
|- ( ( J e. I /\ K e. 2o ) -> ( A. a e. I A. b e. 2o A r ( A splice <. N , N , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) -> <. A , ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) >. e. r ) ) |
35 |
18 34
|
sylan9 |
|- ( ( ( A e. W /\ N e. ( 0 ... ( # ` A ) ) ) /\ ( J e. I /\ K e. 2o ) ) -> ( A. u e. W A. i e. ( 0 ... ( # ` u ) ) A. a e. I A. b e. 2o u r ( u splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) -> <. A , ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) >. e. r ) ) |
36 |
35
|
adantld |
|- ( ( ( A e. W /\ N e. ( 0 ... ( # ` A ) ) ) /\ ( J e. I /\ K e. 2o ) ) -> ( ( r Er W /\ A. u e. W A. i e. ( 0 ... ( # ` u ) ) A. a e. I A. b e. 2o u r ( u splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) -> <. A , ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) >. e. r ) ) |
37 |
36
|
alrimiv |
|- ( ( ( A e. W /\ N e. ( 0 ... ( # ` A ) ) ) /\ ( J e. I /\ K e. 2o ) ) -> A. r ( ( r Er W /\ A. u e. W A. i e. ( 0 ... ( # ` u ) ) A. a e. I A. b e. 2o u r ( u splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) -> <. A , ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) >. e. r ) ) |
38 |
|
opex |
|- <. A , ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) >. e. _V |
39 |
38
|
elintab |
|- ( <. A , ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) >. e. |^| { r | ( r Er W /\ A. u e. W A. i e. ( 0 ... ( # ` u ) ) A. a e. I A. b e. 2o u r ( u splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) } <-> A. r ( ( r Er W /\ A. u e. W A. i e. ( 0 ... ( # ` u ) ) A. a e. I A. b e. 2o u r ( u splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) -> <. A , ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) >. e. r ) ) |
40 |
37 39
|
sylibr |
|- ( ( ( A e. W /\ N e. ( 0 ... ( # ` A ) ) ) /\ ( J e. I /\ K e. 2o ) ) -> <. A , ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) >. e. |^| { r | ( r Er W /\ A. u e. W A. i e. ( 0 ... ( # ` u ) ) A. a e. I A. b e. 2o u r ( u splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) } ) |
41 |
1 2
|
efgval |
|- .~ = |^| { r | ( r Er W /\ A. u e. W A. i e. ( 0 ... ( # ` u ) ) A. a e. I A. b e. 2o u r ( u splice <. i , i , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) } |
42 |
40 41
|
eleqtrrdi |
|- ( ( ( A e. W /\ N e. ( 0 ... ( # ` A ) ) ) /\ ( J e. I /\ K e. 2o ) ) -> <. A , ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) >. e. .~ ) |
43 |
|
df-br |
|- ( A .~ ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) <-> <. A , ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) >. e. .~ ) |
44 |
42 43
|
sylibr |
|- ( ( ( A e. W /\ N e. ( 0 ... ( # ` A ) ) ) /\ ( J e. I /\ K e. 2o ) ) -> A .~ ( A splice <. N , N , <" <. J , K >. <. J , ( 1o \ K ) >. "> >. ) ) |