| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgval.w |  |-  W = ( _I ` Word ( I X. 2o ) ) | 
						
							| 2 |  | efgval.r |  |-  .~ = ( ~FG ` I ) | 
						
							| 3 |  | efgval2.m |  |-  M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) | 
						
							| 4 |  | efgval2.t |  |-  T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) | 
						
							| 5 |  | fveq2 |  |-  ( a = A -> ( T ` a ) = ( T ` A ) ) | 
						
							| 6 | 5 | rneqd |  |-  ( a = A -> ran ( T ` a ) = ran ( T ` A ) ) | 
						
							| 7 |  | eceq1 |  |-  ( a = A -> [ a ] r = [ A ] r ) | 
						
							| 8 | 6 7 | sseq12d |  |-  ( a = A -> ( ran ( T ` a ) C_ [ a ] r <-> ran ( T ` A ) C_ [ A ] r ) ) | 
						
							| 9 | 8 | rspcv |  |-  ( A e. W -> ( A. a e. W ran ( T ` a ) C_ [ a ] r -> ran ( T ` A ) C_ [ A ] r ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( A e. W /\ B e. ran ( T ` A ) ) -> ( A. a e. W ran ( T ` a ) C_ [ a ] r -> ran ( T ` A ) C_ [ A ] r ) ) | 
						
							| 11 |  | ssel |  |-  ( ran ( T ` A ) C_ [ A ] r -> ( B e. ran ( T ` A ) -> B e. [ A ] r ) ) | 
						
							| 12 | 11 | com12 |  |-  ( B e. ran ( T ` A ) -> ( ran ( T ` A ) C_ [ A ] r -> B e. [ A ] r ) ) | 
						
							| 13 |  | simpl |  |-  ( ( B e. [ A ] r /\ A e. W ) -> B e. [ A ] r ) | 
						
							| 14 |  | elecg |  |-  ( ( B e. [ A ] r /\ A e. W ) -> ( B e. [ A ] r <-> A r B ) ) | 
						
							| 15 | 13 14 | mpbid |  |-  ( ( B e. [ A ] r /\ A e. W ) -> A r B ) | 
						
							| 16 |  | df-br |  |-  ( A r B <-> <. A , B >. e. r ) | 
						
							| 17 | 15 16 | sylib |  |-  ( ( B e. [ A ] r /\ A e. W ) -> <. A , B >. e. r ) | 
						
							| 18 | 17 | expcom |  |-  ( A e. W -> ( B e. [ A ] r -> <. A , B >. e. r ) ) | 
						
							| 19 | 12 18 | sylan9r |  |-  ( ( A e. W /\ B e. ran ( T ` A ) ) -> ( ran ( T ` A ) C_ [ A ] r -> <. A , B >. e. r ) ) | 
						
							| 20 | 10 19 | syld |  |-  ( ( A e. W /\ B e. ran ( T ` A ) ) -> ( A. a e. W ran ( T ` a ) C_ [ a ] r -> <. A , B >. e. r ) ) | 
						
							| 21 | 20 | adantld |  |-  ( ( A e. W /\ B e. ran ( T ` A ) ) -> ( ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) -> <. A , B >. e. r ) ) | 
						
							| 22 | 21 | alrimiv |  |-  ( ( A e. W /\ B e. ran ( T ` A ) ) -> A. r ( ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) -> <. A , B >. e. r ) ) | 
						
							| 23 |  | opex |  |-  <. A , B >. e. _V | 
						
							| 24 | 23 | elintab |  |-  ( <. A , B >. e. |^| { r | ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) } <-> A. r ( ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) -> <. A , B >. e. r ) ) | 
						
							| 25 | 22 24 | sylibr |  |-  ( ( A e. W /\ B e. ran ( T ` A ) ) -> <. A , B >. e. |^| { r | ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) } ) | 
						
							| 26 | 1 2 3 4 | efgval2 |  |-  .~ = |^| { r | ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) } | 
						
							| 27 | 25 26 | eleqtrrdi |  |-  ( ( A e. W /\ B e. ran ( T ` A ) ) -> <. A , B >. e. .~ ) | 
						
							| 28 |  | df-br |  |-  ( A .~ B <-> <. A , B >. e. .~ ) | 
						
							| 29 | 27 28 | sylibr |  |-  ( ( A e. W /\ B e. ran ( T ` A ) ) -> A .~ B ) |