Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
|- W = ( _I ` Word ( I X. 2o ) ) |
2 |
|
efgval.r |
|- .~ = ( ~FG ` I ) |
3 |
|
efgval2.m |
|- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
4 |
|
efgval2.t |
|- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
5 |
|
fveq2 |
|- ( a = A -> ( T ` a ) = ( T ` A ) ) |
6 |
5
|
rneqd |
|- ( a = A -> ran ( T ` a ) = ran ( T ` A ) ) |
7 |
|
eceq1 |
|- ( a = A -> [ a ] r = [ A ] r ) |
8 |
6 7
|
sseq12d |
|- ( a = A -> ( ran ( T ` a ) C_ [ a ] r <-> ran ( T ` A ) C_ [ A ] r ) ) |
9 |
8
|
rspcv |
|- ( A e. W -> ( A. a e. W ran ( T ` a ) C_ [ a ] r -> ran ( T ` A ) C_ [ A ] r ) ) |
10 |
9
|
adantr |
|- ( ( A e. W /\ B e. ran ( T ` A ) ) -> ( A. a e. W ran ( T ` a ) C_ [ a ] r -> ran ( T ` A ) C_ [ A ] r ) ) |
11 |
|
ssel |
|- ( ran ( T ` A ) C_ [ A ] r -> ( B e. ran ( T ` A ) -> B e. [ A ] r ) ) |
12 |
11
|
com12 |
|- ( B e. ran ( T ` A ) -> ( ran ( T ` A ) C_ [ A ] r -> B e. [ A ] r ) ) |
13 |
|
simpl |
|- ( ( B e. [ A ] r /\ A e. W ) -> B e. [ A ] r ) |
14 |
|
elecg |
|- ( ( B e. [ A ] r /\ A e. W ) -> ( B e. [ A ] r <-> A r B ) ) |
15 |
13 14
|
mpbid |
|- ( ( B e. [ A ] r /\ A e. W ) -> A r B ) |
16 |
|
df-br |
|- ( A r B <-> <. A , B >. e. r ) |
17 |
15 16
|
sylib |
|- ( ( B e. [ A ] r /\ A e. W ) -> <. A , B >. e. r ) |
18 |
17
|
expcom |
|- ( A e. W -> ( B e. [ A ] r -> <. A , B >. e. r ) ) |
19 |
12 18
|
sylan9r |
|- ( ( A e. W /\ B e. ran ( T ` A ) ) -> ( ran ( T ` A ) C_ [ A ] r -> <. A , B >. e. r ) ) |
20 |
10 19
|
syld |
|- ( ( A e. W /\ B e. ran ( T ` A ) ) -> ( A. a e. W ran ( T ` a ) C_ [ a ] r -> <. A , B >. e. r ) ) |
21 |
20
|
adantld |
|- ( ( A e. W /\ B e. ran ( T ` A ) ) -> ( ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) -> <. A , B >. e. r ) ) |
22 |
21
|
alrimiv |
|- ( ( A e. W /\ B e. ran ( T ` A ) ) -> A. r ( ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) -> <. A , B >. e. r ) ) |
23 |
|
opex |
|- <. A , B >. e. _V |
24 |
23
|
elintab |
|- ( <. A , B >. e. |^| { r | ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) } <-> A. r ( ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) -> <. A , B >. e. r ) ) |
25 |
22 24
|
sylibr |
|- ( ( A e. W /\ B e. ran ( T ` A ) ) -> <. A , B >. e. |^| { r | ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) } ) |
26 |
1 2 3 4
|
efgval2 |
|- .~ = |^| { r | ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) } |
27 |
25 26
|
eleqtrrdi |
|- ( ( A e. W /\ B e. ran ( T ` A ) ) -> <. A , B >. e. .~ ) |
28 |
|
df-br |
|- ( A .~ B <-> <. A , B >. e. .~ ) |
29 |
27 28
|
sylibr |
|- ( ( A e. W /\ B e. ran ( T ` A ) ) -> A .~ B ) |