Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
|- W = ( _I ` Word ( I X. 2o ) ) |
2 |
|
efgval.r |
|- .~ = ( ~FG ` I ) |
3 |
|
efgval2.m |
|- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
4 |
|
efgval2.t |
|- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
5 |
|
fviss |
|- ( _I ` Word ( I X. 2o ) ) C_ Word ( I X. 2o ) |
6 |
1 5
|
eqsstri |
|- W C_ Word ( I X. 2o ) |
7 |
6
|
sseli |
|- ( A e. W -> A e. Word ( I X. 2o ) ) |
8 |
|
revcl |
|- ( A e. Word ( I X. 2o ) -> ( reverse ` A ) e. Word ( I X. 2o ) ) |
9 |
7 8
|
syl |
|- ( A e. W -> ( reverse ` A ) e. Word ( I X. 2o ) ) |
10 |
3
|
efgmf |
|- M : ( I X. 2o ) --> ( I X. 2o ) |
11 |
|
revco |
|- ( ( ( reverse ` A ) e. Word ( I X. 2o ) /\ M : ( I X. 2o ) --> ( I X. 2o ) ) -> ( M o. ( reverse ` ( reverse ` A ) ) ) = ( reverse ` ( M o. ( reverse ` A ) ) ) ) |
12 |
9 10 11
|
sylancl |
|- ( A e. W -> ( M o. ( reverse ` ( reverse ` A ) ) ) = ( reverse ` ( M o. ( reverse ` A ) ) ) ) |
13 |
|
revrev |
|- ( A e. Word ( I X. 2o ) -> ( reverse ` ( reverse ` A ) ) = A ) |
14 |
7 13
|
syl |
|- ( A e. W -> ( reverse ` ( reverse ` A ) ) = A ) |
15 |
14
|
coeq2d |
|- ( A e. W -> ( M o. ( reverse ` ( reverse ` A ) ) ) = ( M o. A ) ) |
16 |
12 15
|
eqtr3d |
|- ( A e. W -> ( reverse ` ( M o. ( reverse ` A ) ) ) = ( M o. A ) ) |
17 |
16
|
coeq2d |
|- ( A e. W -> ( M o. ( reverse ` ( M o. ( reverse ` A ) ) ) ) = ( M o. ( M o. A ) ) ) |
18 |
|
wrdf |
|- ( A e. Word ( I X. 2o ) -> A : ( 0 ..^ ( # ` A ) ) --> ( I X. 2o ) ) |
19 |
7 18
|
syl |
|- ( A e. W -> A : ( 0 ..^ ( # ` A ) ) --> ( I X. 2o ) ) |
20 |
19
|
ffvelrnda |
|- ( ( A e. W /\ c e. ( 0 ..^ ( # ` A ) ) ) -> ( A ` c ) e. ( I X. 2o ) ) |
21 |
3
|
efgmnvl |
|- ( ( A ` c ) e. ( I X. 2o ) -> ( M ` ( M ` ( A ` c ) ) ) = ( A ` c ) ) |
22 |
20 21
|
syl |
|- ( ( A e. W /\ c e. ( 0 ..^ ( # ` A ) ) ) -> ( M ` ( M ` ( A ` c ) ) ) = ( A ` c ) ) |
23 |
22
|
mpteq2dva |
|- ( A e. W -> ( c e. ( 0 ..^ ( # ` A ) ) |-> ( M ` ( M ` ( A ` c ) ) ) ) = ( c e. ( 0 ..^ ( # ` A ) ) |-> ( A ` c ) ) ) |
24 |
10
|
ffvelrni |
|- ( ( A ` c ) e. ( I X. 2o ) -> ( M ` ( A ` c ) ) e. ( I X. 2o ) ) |
25 |
20 24
|
syl |
|- ( ( A e. W /\ c e. ( 0 ..^ ( # ` A ) ) ) -> ( M ` ( A ` c ) ) e. ( I X. 2o ) ) |
26 |
|
fcompt |
|- ( ( M : ( I X. 2o ) --> ( I X. 2o ) /\ A : ( 0 ..^ ( # ` A ) ) --> ( I X. 2o ) ) -> ( M o. A ) = ( c e. ( 0 ..^ ( # ` A ) ) |-> ( M ` ( A ` c ) ) ) ) |
27 |
10 19 26
|
sylancr |
|- ( A e. W -> ( M o. A ) = ( c e. ( 0 ..^ ( # ` A ) ) |-> ( M ` ( A ` c ) ) ) ) |
28 |
10
|
a1i |
|- ( A e. W -> M : ( I X. 2o ) --> ( I X. 2o ) ) |
29 |
28
|
feqmptd |
|- ( A e. W -> M = ( a e. ( I X. 2o ) |-> ( M ` a ) ) ) |
30 |
|
fveq2 |
|- ( a = ( M ` ( A ` c ) ) -> ( M ` a ) = ( M ` ( M ` ( A ` c ) ) ) ) |
31 |
25 27 29 30
|
fmptco |
|- ( A e. W -> ( M o. ( M o. A ) ) = ( c e. ( 0 ..^ ( # ` A ) ) |-> ( M ` ( M ` ( A ` c ) ) ) ) ) |
32 |
19
|
feqmptd |
|- ( A e. W -> A = ( c e. ( 0 ..^ ( # ` A ) ) |-> ( A ` c ) ) ) |
33 |
23 31 32
|
3eqtr4d |
|- ( A e. W -> ( M o. ( M o. A ) ) = A ) |
34 |
17 33
|
eqtrd |
|- ( A e. W -> ( M o. ( reverse ` ( M o. ( reverse ` A ) ) ) ) = A ) |
35 |
34
|
oveq2d |
|- ( A e. W -> ( ( M o. ( reverse ` A ) ) ++ ( M o. ( reverse ` ( M o. ( reverse ` A ) ) ) ) ) = ( ( M o. ( reverse ` A ) ) ++ A ) ) |
36 |
|
wrdco |
|- ( ( ( reverse ` A ) e. Word ( I X. 2o ) /\ M : ( I X. 2o ) --> ( I X. 2o ) ) -> ( M o. ( reverse ` A ) ) e. Word ( I X. 2o ) ) |
37 |
9 10 36
|
sylancl |
|- ( A e. W -> ( M o. ( reverse ` A ) ) e. Word ( I X. 2o ) ) |
38 |
1
|
efgrcl |
|- ( A e. W -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) |
39 |
38
|
simprd |
|- ( A e. W -> W = Word ( I X. 2o ) ) |
40 |
37 39
|
eleqtrrd |
|- ( A e. W -> ( M o. ( reverse ` A ) ) e. W ) |
41 |
1 2 3 4
|
efginvrel2 |
|- ( ( M o. ( reverse ` A ) ) e. W -> ( ( M o. ( reverse ` A ) ) ++ ( M o. ( reverse ` ( M o. ( reverse ` A ) ) ) ) ) .~ (/) ) |
42 |
40 41
|
syl |
|- ( A e. W -> ( ( M o. ( reverse ` A ) ) ++ ( M o. ( reverse ` ( M o. ( reverse ` A ) ) ) ) ) .~ (/) ) |
43 |
35 42
|
eqbrtrrd |
|- ( A e. W -> ( ( M o. ( reverse ` A ) ) ++ A ) .~ (/) ) |