Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
|- W = ( _I ` Word ( I X. 2o ) ) |
2 |
|
efgval.r |
|- .~ = ( ~FG ` I ) |
3 |
|
efgval2.m |
|- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
4 |
|
efgval2.t |
|- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
5 |
|
fviss |
|- ( _I ` Word ( I X. 2o ) ) C_ Word ( I X. 2o ) |
6 |
1 5
|
eqsstri |
|- W C_ Word ( I X. 2o ) |
7 |
6
|
sseli |
|- ( A e. W -> A e. Word ( I X. 2o ) ) |
8 |
|
id |
|- ( c = (/) -> c = (/) ) |
9 |
|
fveq2 |
|- ( c = (/) -> ( reverse ` c ) = ( reverse ` (/) ) ) |
10 |
|
rev0 |
|- ( reverse ` (/) ) = (/) |
11 |
9 10
|
eqtrdi |
|- ( c = (/) -> ( reverse ` c ) = (/) ) |
12 |
11
|
coeq2d |
|- ( c = (/) -> ( M o. ( reverse ` c ) ) = ( M o. (/) ) ) |
13 |
|
co02 |
|- ( M o. (/) ) = (/) |
14 |
12 13
|
eqtrdi |
|- ( c = (/) -> ( M o. ( reverse ` c ) ) = (/) ) |
15 |
8 14
|
oveq12d |
|- ( c = (/) -> ( c ++ ( M o. ( reverse ` c ) ) ) = ( (/) ++ (/) ) ) |
16 |
15
|
breq1d |
|- ( c = (/) -> ( ( c ++ ( M o. ( reverse ` c ) ) ) .~ (/) <-> ( (/) ++ (/) ) .~ (/) ) ) |
17 |
16
|
imbi2d |
|- ( c = (/) -> ( ( A e. W -> ( c ++ ( M o. ( reverse ` c ) ) ) .~ (/) ) <-> ( A e. W -> ( (/) ++ (/) ) .~ (/) ) ) ) |
18 |
|
id |
|- ( c = a -> c = a ) |
19 |
|
fveq2 |
|- ( c = a -> ( reverse ` c ) = ( reverse ` a ) ) |
20 |
19
|
coeq2d |
|- ( c = a -> ( M o. ( reverse ` c ) ) = ( M o. ( reverse ` a ) ) ) |
21 |
18 20
|
oveq12d |
|- ( c = a -> ( c ++ ( M o. ( reverse ` c ) ) ) = ( a ++ ( M o. ( reverse ` a ) ) ) ) |
22 |
21
|
breq1d |
|- ( c = a -> ( ( c ++ ( M o. ( reverse ` c ) ) ) .~ (/) <-> ( a ++ ( M o. ( reverse ` a ) ) ) .~ (/) ) ) |
23 |
22
|
imbi2d |
|- ( c = a -> ( ( A e. W -> ( c ++ ( M o. ( reverse ` c ) ) ) .~ (/) ) <-> ( A e. W -> ( a ++ ( M o. ( reverse ` a ) ) ) .~ (/) ) ) ) |
24 |
|
id |
|- ( c = ( a ++ <" b "> ) -> c = ( a ++ <" b "> ) ) |
25 |
|
fveq2 |
|- ( c = ( a ++ <" b "> ) -> ( reverse ` c ) = ( reverse ` ( a ++ <" b "> ) ) ) |
26 |
25
|
coeq2d |
|- ( c = ( a ++ <" b "> ) -> ( M o. ( reverse ` c ) ) = ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) |
27 |
24 26
|
oveq12d |
|- ( c = ( a ++ <" b "> ) -> ( c ++ ( M o. ( reverse ` c ) ) ) = ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) ) |
28 |
27
|
breq1d |
|- ( c = ( a ++ <" b "> ) -> ( ( c ++ ( M o. ( reverse ` c ) ) ) .~ (/) <-> ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) .~ (/) ) ) |
29 |
28
|
imbi2d |
|- ( c = ( a ++ <" b "> ) -> ( ( A e. W -> ( c ++ ( M o. ( reverse ` c ) ) ) .~ (/) ) <-> ( A e. W -> ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) .~ (/) ) ) ) |
30 |
|
id |
|- ( c = A -> c = A ) |
31 |
|
fveq2 |
|- ( c = A -> ( reverse ` c ) = ( reverse ` A ) ) |
32 |
31
|
coeq2d |
|- ( c = A -> ( M o. ( reverse ` c ) ) = ( M o. ( reverse ` A ) ) ) |
33 |
30 32
|
oveq12d |
|- ( c = A -> ( c ++ ( M o. ( reverse ` c ) ) ) = ( A ++ ( M o. ( reverse ` A ) ) ) ) |
34 |
33
|
breq1d |
|- ( c = A -> ( ( c ++ ( M o. ( reverse ` c ) ) ) .~ (/) <-> ( A ++ ( M o. ( reverse ` A ) ) ) .~ (/) ) ) |
35 |
34
|
imbi2d |
|- ( c = A -> ( ( A e. W -> ( c ++ ( M o. ( reverse ` c ) ) ) .~ (/) ) <-> ( A e. W -> ( A ++ ( M o. ( reverse ` A ) ) ) .~ (/) ) ) ) |
36 |
|
ccatidid |
|- ( (/) ++ (/) ) = (/) |
37 |
1 2
|
efger |
|- .~ Er W |
38 |
37
|
a1i |
|- ( A e. W -> .~ Er W ) |
39 |
|
wrd0 |
|- (/) e. Word ( I X. 2o ) |
40 |
1
|
efgrcl |
|- ( A e. W -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) |
41 |
40
|
simprd |
|- ( A e. W -> W = Word ( I X. 2o ) ) |
42 |
39 41
|
eleqtrrid |
|- ( A e. W -> (/) e. W ) |
43 |
38 42
|
erref |
|- ( A e. W -> (/) .~ (/) ) |
44 |
36 43
|
eqbrtrid |
|- ( A e. W -> ( (/) ++ (/) ) .~ (/) ) |
45 |
37
|
a1i |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> .~ Er W ) |
46 |
|
simprl |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> a e. Word ( I X. 2o ) ) |
47 |
|
revcl |
|- ( a e. Word ( I X. 2o ) -> ( reverse ` a ) e. Word ( I X. 2o ) ) |
48 |
47
|
ad2antrl |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( reverse ` a ) e. Word ( I X. 2o ) ) |
49 |
3
|
efgmf |
|- M : ( I X. 2o ) --> ( I X. 2o ) |
50 |
|
wrdco |
|- ( ( ( reverse ` a ) e. Word ( I X. 2o ) /\ M : ( I X. 2o ) --> ( I X. 2o ) ) -> ( M o. ( reverse ` a ) ) e. Word ( I X. 2o ) ) |
51 |
48 49 50
|
sylancl |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( M o. ( reverse ` a ) ) e. Word ( I X. 2o ) ) |
52 |
|
ccatcl |
|- ( ( a e. Word ( I X. 2o ) /\ ( M o. ( reverse ` a ) ) e. Word ( I X. 2o ) ) -> ( a ++ ( M o. ( reverse ` a ) ) ) e. Word ( I X. 2o ) ) |
53 |
46 51 52
|
syl2anc |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( a ++ ( M o. ( reverse ` a ) ) ) e. Word ( I X. 2o ) ) |
54 |
41
|
adantr |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> W = Word ( I X. 2o ) ) |
55 |
53 54
|
eleqtrrd |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( a ++ ( M o. ( reverse ` a ) ) ) e. W ) |
56 |
|
lencl |
|- ( a e. Word ( I X. 2o ) -> ( # ` a ) e. NN0 ) |
57 |
56
|
ad2antrl |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( # ` a ) e. NN0 ) |
58 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
59 |
57 58
|
eleqtrdi |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( # ` a ) e. ( ZZ>= ` 0 ) ) |
60 |
|
ccatlen |
|- ( ( a e. Word ( I X. 2o ) /\ ( M o. ( reverse ` a ) ) e. Word ( I X. 2o ) ) -> ( # ` ( a ++ ( M o. ( reverse ` a ) ) ) ) = ( ( # ` a ) + ( # ` ( M o. ( reverse ` a ) ) ) ) ) |
61 |
46 51 60
|
syl2anc |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( # ` ( a ++ ( M o. ( reverse ` a ) ) ) ) = ( ( # ` a ) + ( # ` ( M o. ( reverse ` a ) ) ) ) ) |
62 |
57
|
nn0zd |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( # ` a ) e. ZZ ) |
63 |
62
|
uzidd |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( # ` a ) e. ( ZZ>= ` ( # ` a ) ) ) |
64 |
|
lencl |
|- ( ( M o. ( reverse ` a ) ) e. Word ( I X. 2o ) -> ( # ` ( M o. ( reverse ` a ) ) ) e. NN0 ) |
65 |
51 64
|
syl |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( # ` ( M o. ( reverse ` a ) ) ) e. NN0 ) |
66 |
|
uzaddcl |
|- ( ( ( # ` a ) e. ( ZZ>= ` ( # ` a ) ) /\ ( # ` ( M o. ( reverse ` a ) ) ) e. NN0 ) -> ( ( # ` a ) + ( # ` ( M o. ( reverse ` a ) ) ) ) e. ( ZZ>= ` ( # ` a ) ) ) |
67 |
63 65 66
|
syl2anc |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( # ` a ) + ( # ` ( M o. ( reverse ` a ) ) ) ) e. ( ZZ>= ` ( # ` a ) ) ) |
68 |
61 67
|
eqeltrd |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( # ` ( a ++ ( M o. ( reverse ` a ) ) ) ) e. ( ZZ>= ` ( # ` a ) ) ) |
69 |
|
elfzuzb |
|- ( ( # ` a ) e. ( 0 ... ( # ` ( a ++ ( M o. ( reverse ` a ) ) ) ) ) <-> ( ( # ` a ) e. ( ZZ>= ` 0 ) /\ ( # ` ( a ++ ( M o. ( reverse ` a ) ) ) ) e. ( ZZ>= ` ( # ` a ) ) ) ) |
70 |
59 68 69
|
sylanbrc |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( # ` a ) e. ( 0 ... ( # ` ( a ++ ( M o. ( reverse ` a ) ) ) ) ) ) |
71 |
|
simprr |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> b e. ( I X. 2o ) ) |
72 |
1 2 3 4
|
efgtval |
|- ( ( ( a ++ ( M o. ( reverse ` a ) ) ) e. W /\ ( # ` a ) e. ( 0 ... ( # ` ( a ++ ( M o. ( reverse ` a ) ) ) ) ) /\ b e. ( I X. 2o ) ) -> ( ( # ` a ) ( T ` ( a ++ ( M o. ( reverse ` a ) ) ) ) b ) = ( ( a ++ ( M o. ( reverse ` a ) ) ) splice <. ( # ` a ) , ( # ` a ) , <" b ( M ` b ) "> >. ) ) |
73 |
55 70 71 72
|
syl3anc |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( # ` a ) ( T ` ( a ++ ( M o. ( reverse ` a ) ) ) ) b ) = ( ( a ++ ( M o. ( reverse ` a ) ) ) splice <. ( # ` a ) , ( # ` a ) , <" b ( M ` b ) "> >. ) ) |
74 |
39
|
a1i |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> (/) e. Word ( I X. 2o ) ) |
75 |
49
|
ffvelrni |
|- ( b e. ( I X. 2o ) -> ( M ` b ) e. ( I X. 2o ) ) |
76 |
75
|
ad2antll |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( M ` b ) e. ( I X. 2o ) ) |
77 |
71 76
|
s2cld |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> <" b ( M ` b ) "> e. Word ( I X. 2o ) ) |
78 |
|
ccatrid |
|- ( a e. Word ( I X. 2o ) -> ( a ++ (/) ) = a ) |
79 |
78
|
ad2antrl |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( a ++ (/) ) = a ) |
80 |
79
|
eqcomd |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> a = ( a ++ (/) ) ) |
81 |
80
|
oveq1d |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( a ++ ( M o. ( reverse ` a ) ) ) = ( ( a ++ (/) ) ++ ( M o. ( reverse ` a ) ) ) ) |
82 |
|
eqidd |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( # ` a ) = ( # ` a ) ) |
83 |
|
hash0 |
|- ( # ` (/) ) = 0 |
84 |
83
|
oveq2i |
|- ( ( # ` a ) + ( # ` (/) ) ) = ( ( # ` a ) + 0 ) |
85 |
57
|
nn0cnd |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( # ` a ) e. CC ) |
86 |
85
|
addid1d |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( # ` a ) + 0 ) = ( # ` a ) ) |
87 |
84 86
|
eqtr2id |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( # ` a ) = ( ( # ` a ) + ( # ` (/) ) ) ) |
88 |
46 74 51 77 81 82 87
|
splval2 |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( a ++ ( M o. ( reverse ` a ) ) ) splice <. ( # ` a ) , ( # ` a ) , <" b ( M ` b ) "> >. ) = ( ( a ++ <" b ( M ` b ) "> ) ++ ( M o. ( reverse ` a ) ) ) ) |
89 |
71
|
s1cld |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> <" b "> e. Word ( I X. 2o ) ) |
90 |
|
revccat |
|- ( ( a e. Word ( I X. 2o ) /\ <" b "> e. Word ( I X. 2o ) ) -> ( reverse ` ( a ++ <" b "> ) ) = ( ( reverse ` <" b "> ) ++ ( reverse ` a ) ) ) |
91 |
46 89 90
|
syl2anc |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( reverse ` ( a ++ <" b "> ) ) = ( ( reverse ` <" b "> ) ++ ( reverse ` a ) ) ) |
92 |
|
revs1 |
|- ( reverse ` <" b "> ) = <" b "> |
93 |
92
|
oveq1i |
|- ( ( reverse ` <" b "> ) ++ ( reverse ` a ) ) = ( <" b "> ++ ( reverse ` a ) ) |
94 |
91 93
|
eqtrdi |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( reverse ` ( a ++ <" b "> ) ) = ( <" b "> ++ ( reverse ` a ) ) ) |
95 |
94
|
coeq2d |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( M o. ( reverse ` ( a ++ <" b "> ) ) ) = ( M o. ( <" b "> ++ ( reverse ` a ) ) ) ) |
96 |
49
|
a1i |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> M : ( I X. 2o ) --> ( I X. 2o ) ) |
97 |
|
ccatco |
|- ( ( <" b "> e. Word ( I X. 2o ) /\ ( reverse ` a ) e. Word ( I X. 2o ) /\ M : ( I X. 2o ) --> ( I X. 2o ) ) -> ( M o. ( <" b "> ++ ( reverse ` a ) ) ) = ( ( M o. <" b "> ) ++ ( M o. ( reverse ` a ) ) ) ) |
98 |
89 48 96 97
|
syl3anc |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( M o. ( <" b "> ++ ( reverse ` a ) ) ) = ( ( M o. <" b "> ) ++ ( M o. ( reverse ` a ) ) ) ) |
99 |
|
s1co |
|- ( ( b e. ( I X. 2o ) /\ M : ( I X. 2o ) --> ( I X. 2o ) ) -> ( M o. <" b "> ) = <" ( M ` b ) "> ) |
100 |
71 49 99
|
sylancl |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( M o. <" b "> ) = <" ( M ` b ) "> ) |
101 |
100
|
oveq1d |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( M o. <" b "> ) ++ ( M o. ( reverse ` a ) ) ) = ( <" ( M ` b ) "> ++ ( M o. ( reverse ` a ) ) ) ) |
102 |
95 98 101
|
3eqtrd |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( M o. ( reverse ` ( a ++ <" b "> ) ) ) = ( <" ( M ` b ) "> ++ ( M o. ( reverse ` a ) ) ) ) |
103 |
102
|
oveq2d |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) = ( ( a ++ <" b "> ) ++ ( <" ( M ` b ) "> ++ ( M o. ( reverse ` a ) ) ) ) ) |
104 |
|
ccatcl |
|- ( ( a e. Word ( I X. 2o ) /\ <" b "> e. Word ( I X. 2o ) ) -> ( a ++ <" b "> ) e. Word ( I X. 2o ) ) |
105 |
46 89 104
|
syl2anc |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( a ++ <" b "> ) e. Word ( I X. 2o ) ) |
106 |
76
|
s1cld |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> <" ( M ` b ) "> e. Word ( I X. 2o ) ) |
107 |
|
ccatass |
|- ( ( ( a ++ <" b "> ) e. Word ( I X. 2o ) /\ <" ( M ` b ) "> e. Word ( I X. 2o ) /\ ( M o. ( reverse ` a ) ) e. Word ( I X. 2o ) ) -> ( ( ( a ++ <" b "> ) ++ <" ( M ` b ) "> ) ++ ( M o. ( reverse ` a ) ) ) = ( ( a ++ <" b "> ) ++ ( <" ( M ` b ) "> ++ ( M o. ( reverse ` a ) ) ) ) ) |
108 |
105 106 51 107
|
syl3anc |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( ( a ++ <" b "> ) ++ <" ( M ` b ) "> ) ++ ( M o. ( reverse ` a ) ) ) = ( ( a ++ <" b "> ) ++ ( <" ( M ` b ) "> ++ ( M o. ( reverse ` a ) ) ) ) ) |
109 |
|
ccatass |
|- ( ( a e. Word ( I X. 2o ) /\ <" b "> e. Word ( I X. 2o ) /\ <" ( M ` b ) "> e. Word ( I X. 2o ) ) -> ( ( a ++ <" b "> ) ++ <" ( M ` b ) "> ) = ( a ++ ( <" b "> ++ <" ( M ` b ) "> ) ) ) |
110 |
46 89 106 109
|
syl3anc |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( a ++ <" b "> ) ++ <" ( M ` b ) "> ) = ( a ++ ( <" b "> ++ <" ( M ` b ) "> ) ) ) |
111 |
|
df-s2 |
|- <" b ( M ` b ) "> = ( <" b "> ++ <" ( M ` b ) "> ) |
112 |
111
|
oveq2i |
|- ( a ++ <" b ( M ` b ) "> ) = ( a ++ ( <" b "> ++ <" ( M ` b ) "> ) ) |
113 |
110 112
|
eqtr4di |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( a ++ <" b "> ) ++ <" ( M ` b ) "> ) = ( a ++ <" b ( M ` b ) "> ) ) |
114 |
113
|
oveq1d |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( ( a ++ <" b "> ) ++ <" ( M ` b ) "> ) ++ ( M o. ( reverse ` a ) ) ) = ( ( a ++ <" b ( M ` b ) "> ) ++ ( M o. ( reverse ` a ) ) ) ) |
115 |
103 108 114
|
3eqtr2rd |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( a ++ <" b ( M ` b ) "> ) ++ ( M o. ( reverse ` a ) ) ) = ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) ) |
116 |
73 88 115
|
3eqtrd |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( # ` a ) ( T ` ( a ++ ( M o. ( reverse ` a ) ) ) ) b ) = ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) ) |
117 |
1 2 3 4
|
efgtf |
|- ( ( a ++ ( M o. ( reverse ` a ) ) ) e. W -> ( ( T ` ( a ++ ( M o. ( reverse ` a ) ) ) ) = ( m e. ( 0 ... ( # ` ( a ++ ( M o. ( reverse ` a ) ) ) ) ) , u e. ( I X. 2o ) |-> ( ( a ++ ( M o. ( reverse ` a ) ) ) splice <. m , m , <" u ( M ` u ) "> >. ) ) /\ ( T ` ( a ++ ( M o. ( reverse ` a ) ) ) ) : ( ( 0 ... ( # ` ( a ++ ( M o. ( reverse ` a ) ) ) ) ) X. ( I X. 2o ) ) --> W ) ) |
118 |
117
|
simprd |
|- ( ( a ++ ( M o. ( reverse ` a ) ) ) e. W -> ( T ` ( a ++ ( M o. ( reverse ` a ) ) ) ) : ( ( 0 ... ( # ` ( a ++ ( M o. ( reverse ` a ) ) ) ) ) X. ( I X. 2o ) ) --> W ) |
119 |
55 118
|
syl |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( T ` ( a ++ ( M o. ( reverse ` a ) ) ) ) : ( ( 0 ... ( # ` ( a ++ ( M o. ( reverse ` a ) ) ) ) ) X. ( I X. 2o ) ) --> W ) |
120 |
119
|
ffnd |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( T ` ( a ++ ( M o. ( reverse ` a ) ) ) ) Fn ( ( 0 ... ( # ` ( a ++ ( M o. ( reverse ` a ) ) ) ) ) X. ( I X. 2o ) ) ) |
121 |
|
fnovrn |
|- ( ( ( T ` ( a ++ ( M o. ( reverse ` a ) ) ) ) Fn ( ( 0 ... ( # ` ( a ++ ( M o. ( reverse ` a ) ) ) ) ) X. ( I X. 2o ) ) /\ ( # ` a ) e. ( 0 ... ( # ` ( a ++ ( M o. ( reverse ` a ) ) ) ) ) /\ b e. ( I X. 2o ) ) -> ( ( # ` a ) ( T ` ( a ++ ( M o. ( reverse ` a ) ) ) ) b ) e. ran ( T ` ( a ++ ( M o. ( reverse ` a ) ) ) ) ) |
122 |
120 70 71 121
|
syl3anc |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( # ` a ) ( T ` ( a ++ ( M o. ( reverse ` a ) ) ) ) b ) e. ran ( T ` ( a ++ ( M o. ( reverse ` a ) ) ) ) ) |
123 |
116 122
|
eqeltrrd |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) e. ran ( T ` ( a ++ ( M o. ( reverse ` a ) ) ) ) ) |
124 |
1 2 3 4
|
efgi2 |
|- ( ( ( a ++ ( M o. ( reverse ` a ) ) ) e. W /\ ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) e. ran ( T ` ( a ++ ( M o. ( reverse ` a ) ) ) ) ) -> ( a ++ ( M o. ( reverse ` a ) ) ) .~ ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) ) |
125 |
55 123 124
|
syl2anc |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( a ++ ( M o. ( reverse ` a ) ) ) .~ ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) ) |
126 |
45 125
|
ersym |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) .~ ( a ++ ( M o. ( reverse ` a ) ) ) ) |
127 |
45
|
ertr |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) .~ ( a ++ ( M o. ( reverse ` a ) ) ) /\ ( a ++ ( M o. ( reverse ` a ) ) ) .~ (/) ) -> ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) .~ (/) ) ) |
128 |
126 127
|
mpand |
|- ( ( A e. W /\ ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) ) -> ( ( a ++ ( M o. ( reverse ` a ) ) ) .~ (/) -> ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) .~ (/) ) ) |
129 |
128
|
expcom |
|- ( ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) -> ( A e. W -> ( ( a ++ ( M o. ( reverse ` a ) ) ) .~ (/) -> ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) .~ (/) ) ) ) |
130 |
129
|
a2d |
|- ( ( a e. Word ( I X. 2o ) /\ b e. ( I X. 2o ) ) -> ( ( A e. W -> ( a ++ ( M o. ( reverse ` a ) ) ) .~ (/) ) -> ( A e. W -> ( ( a ++ <" b "> ) ++ ( M o. ( reverse ` ( a ++ <" b "> ) ) ) ) .~ (/) ) ) ) |
131 |
17 23 29 35 44 130
|
wrdind |
|- ( A e. Word ( I X. 2o ) -> ( A e. W -> ( A ++ ( M o. ( reverse ` A ) ) ) .~ (/) ) ) |
132 |
7 131
|
mpcom |
|- ( A e. W -> ( A ++ ( M o. ( reverse ` A ) ) ) .~ (/) ) |