Step |
Hyp |
Ref |
Expression |
1 |
|
efgmval.m |
|- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
2 |
|
elxp2 |
|- ( A e. ( I X. 2o ) <-> E. a e. I E. b e. 2o A = <. a , b >. ) |
3 |
1
|
efgmval |
|- ( ( a e. I /\ b e. 2o ) -> ( a M b ) = <. a , ( 1o \ b ) >. ) |
4 |
3
|
fveq2d |
|- ( ( a e. I /\ b e. 2o ) -> ( M ` ( a M b ) ) = ( M ` <. a , ( 1o \ b ) >. ) ) |
5 |
|
df-ov |
|- ( a M ( 1o \ b ) ) = ( M ` <. a , ( 1o \ b ) >. ) |
6 |
4 5
|
eqtr4di |
|- ( ( a e. I /\ b e. 2o ) -> ( M ` ( a M b ) ) = ( a M ( 1o \ b ) ) ) |
7 |
|
2oconcl |
|- ( b e. 2o -> ( 1o \ b ) e. 2o ) |
8 |
1
|
efgmval |
|- ( ( a e. I /\ ( 1o \ b ) e. 2o ) -> ( a M ( 1o \ b ) ) = <. a , ( 1o \ ( 1o \ b ) ) >. ) |
9 |
7 8
|
sylan2 |
|- ( ( a e. I /\ b e. 2o ) -> ( a M ( 1o \ b ) ) = <. a , ( 1o \ ( 1o \ b ) ) >. ) |
10 |
|
1on |
|- 1o e. On |
11 |
10
|
onordi |
|- Ord 1o |
12 |
|
ordtr |
|- ( Ord 1o -> Tr 1o ) |
13 |
|
trsucss |
|- ( Tr 1o -> ( b e. suc 1o -> b C_ 1o ) ) |
14 |
11 12 13
|
mp2b |
|- ( b e. suc 1o -> b C_ 1o ) |
15 |
|
df-2o |
|- 2o = suc 1o |
16 |
14 15
|
eleq2s |
|- ( b e. 2o -> b C_ 1o ) |
17 |
16
|
adantl |
|- ( ( a e. I /\ b e. 2o ) -> b C_ 1o ) |
18 |
|
dfss4 |
|- ( b C_ 1o <-> ( 1o \ ( 1o \ b ) ) = b ) |
19 |
17 18
|
sylib |
|- ( ( a e. I /\ b e. 2o ) -> ( 1o \ ( 1o \ b ) ) = b ) |
20 |
19
|
opeq2d |
|- ( ( a e. I /\ b e. 2o ) -> <. a , ( 1o \ ( 1o \ b ) ) >. = <. a , b >. ) |
21 |
6 9 20
|
3eqtrd |
|- ( ( a e. I /\ b e. 2o ) -> ( M ` ( a M b ) ) = <. a , b >. ) |
22 |
|
fveq2 |
|- ( A = <. a , b >. -> ( M ` A ) = ( M ` <. a , b >. ) ) |
23 |
|
df-ov |
|- ( a M b ) = ( M ` <. a , b >. ) |
24 |
22 23
|
eqtr4di |
|- ( A = <. a , b >. -> ( M ` A ) = ( a M b ) ) |
25 |
24
|
fveq2d |
|- ( A = <. a , b >. -> ( M ` ( M ` A ) ) = ( M ` ( a M b ) ) ) |
26 |
|
id |
|- ( A = <. a , b >. -> A = <. a , b >. ) |
27 |
25 26
|
eqeq12d |
|- ( A = <. a , b >. -> ( ( M ` ( M ` A ) ) = A <-> ( M ` ( a M b ) ) = <. a , b >. ) ) |
28 |
21 27
|
syl5ibrcom |
|- ( ( a e. I /\ b e. 2o ) -> ( A = <. a , b >. -> ( M ` ( M ` A ) ) = A ) ) |
29 |
28
|
rexlimivv |
|- ( E. a e. I E. b e. 2o A = <. a , b >. -> ( M ` ( M ` A ) ) = A ) |
30 |
2 29
|
sylbi |
|- ( A e. ( I X. 2o ) -> ( M ` ( M ` A ) ) = A ) |