Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
|- W = ( _I ` Word ( I X. 2o ) ) |
2 |
|
2on0 |
|- 2o =/= (/) |
3 |
|
dmxp |
|- ( 2o =/= (/) -> dom ( I X. 2o ) = I ) |
4 |
2 3
|
ax-mp |
|- dom ( I X. 2o ) = I |
5 |
|
elfvex |
|- ( A e. ( _I ` Word ( I X. 2o ) ) -> Word ( I X. 2o ) e. _V ) |
6 |
5 1
|
eleq2s |
|- ( A e. W -> Word ( I X. 2o ) e. _V ) |
7 |
|
wrdexb |
|- ( ( I X. 2o ) e. _V <-> Word ( I X. 2o ) e. _V ) |
8 |
6 7
|
sylibr |
|- ( A e. W -> ( I X. 2o ) e. _V ) |
9 |
8
|
dmexd |
|- ( A e. W -> dom ( I X. 2o ) e. _V ) |
10 |
4 9
|
eqeltrrid |
|- ( A e. W -> I e. _V ) |
11 |
|
fvi |
|- ( Word ( I X. 2o ) e. _V -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
12 |
6 11
|
syl |
|- ( A e. W -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
13 |
1 12
|
eqtrid |
|- ( A e. W -> W = Word ( I X. 2o ) ) |
14 |
10 13
|
jca |
|- ( A e. W -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) |