Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
|- W = ( _I ` Word ( I X. 2o ) ) |
2 |
|
efgval.r |
|- .~ = ( ~FG ` I ) |
3 |
|
efgval2.m |
|- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
4 |
|
efgval2.t |
|- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
5 |
|
efgred.d |
|- D = ( W \ U_ x e. W ran ( T ` x ) ) |
6 |
|
efgred.s |
|- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
7 |
|
fviss |
|- ( _I ` Word ( I X. 2o ) ) C_ Word ( I X. 2o ) |
8 |
1 7
|
eqsstri |
|- W C_ Word ( I X. 2o ) |
9 |
1 2 3 4 5 6
|
efgsf |
|- S : { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } --> W |
10 |
9
|
fdmi |
|- dom S = { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |
11 |
10
|
feq2i |
|- ( S : dom S --> W <-> S : { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } --> W ) |
12 |
9 11
|
mpbir |
|- S : dom S --> W |
13 |
12
|
ffvelrni |
|- ( A e. dom S -> ( S ` A ) e. W ) |
14 |
13
|
adantr |
|- ( ( A e. dom S /\ B e. dom S ) -> ( S ` A ) e. W ) |
15 |
8 14
|
sselid |
|- ( ( A e. dom S /\ B e. dom S ) -> ( S ` A ) e. Word ( I X. 2o ) ) |
16 |
|
lencl |
|- ( ( S ` A ) e. Word ( I X. 2o ) -> ( # ` ( S ` A ) ) e. NN0 ) |
17 |
15 16
|
syl |
|- ( ( A e. dom S /\ B e. dom S ) -> ( # ` ( S ` A ) ) e. NN0 ) |
18 |
|
peano2nn0 |
|- ( ( # ` ( S ` A ) ) e. NN0 -> ( ( # ` ( S ` A ) ) + 1 ) e. NN0 ) |
19 |
17 18
|
syl |
|- ( ( A e. dom S /\ B e. dom S ) -> ( ( # ` ( S ` A ) ) + 1 ) e. NN0 ) |
20 |
|
breq2 |
|- ( c = 0 -> ( ( # ` ( S ` a ) ) < c <-> ( # ` ( S ` a ) ) < 0 ) ) |
21 |
20
|
imbi1d |
|- ( c = 0 -> ( ( ( # ` ( S ` a ) ) < c -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` a ) ) < 0 -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
22 |
21
|
2ralbidv |
|- ( c = 0 -> ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < c -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < 0 -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
23 |
|
breq2 |
|- ( c = i -> ( ( # ` ( S ` a ) ) < c <-> ( # ` ( S ` a ) ) < i ) ) |
24 |
23
|
imbi1d |
|- ( c = i -> ( ( ( # ` ( S ` a ) ) < c -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
25 |
24
|
2ralbidv |
|- ( c = i -> ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < c -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
26 |
|
breq2 |
|- ( c = ( i + 1 ) -> ( ( # ` ( S ` a ) ) < c <-> ( # ` ( S ` a ) ) < ( i + 1 ) ) ) |
27 |
26
|
imbi1d |
|- ( c = ( i + 1 ) -> ( ( ( # ` ( S ` a ) ) < c -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` a ) ) < ( i + 1 ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
28 |
27
|
2ralbidv |
|- ( c = ( i + 1 ) -> ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < c -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( i + 1 ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
29 |
|
breq2 |
|- ( c = ( ( # ` ( S ` A ) ) + 1 ) -> ( ( # ` ( S ` a ) ) < c <-> ( # ` ( S ` a ) ) < ( ( # ` ( S ` A ) ) + 1 ) ) ) |
30 |
29
|
imbi1d |
|- ( c = ( ( # ` ( S ` A ) ) + 1 ) -> ( ( ( # ` ( S ` a ) ) < c -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` a ) ) < ( ( # ` ( S ` A ) ) + 1 ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
31 |
30
|
2ralbidv |
|- ( c = ( ( # ` ( S ` A ) ) + 1 ) -> ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < c -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( ( # ` ( S ` A ) ) + 1 ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
32 |
12
|
ffvelrni |
|- ( a e. dom S -> ( S ` a ) e. W ) |
33 |
8 32
|
sselid |
|- ( a e. dom S -> ( S ` a ) e. Word ( I X. 2o ) ) |
34 |
|
lencl |
|- ( ( S ` a ) e. Word ( I X. 2o ) -> ( # ` ( S ` a ) ) e. NN0 ) |
35 |
33 34
|
syl |
|- ( a e. dom S -> ( # ` ( S ` a ) ) e. NN0 ) |
36 |
|
nn0nlt0 |
|- ( ( # ` ( S ` a ) ) e. NN0 -> -. ( # ` ( S ` a ) ) < 0 ) |
37 |
35 36
|
syl |
|- ( a e. dom S -> -. ( # ` ( S ` a ) ) < 0 ) |
38 |
37
|
pm2.21d |
|- ( a e. dom S -> ( ( # ` ( S ` a ) ) < 0 -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
39 |
38
|
adantr |
|- ( ( a e. dom S /\ b e. dom S ) -> ( ( # ` ( S ` a ) ) < 0 -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
40 |
39
|
rgen2 |
|- A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < 0 -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) |
41 |
|
simpl1 |
|- ( ( ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( c e. dom S /\ d e. dom S ) /\ ( ( # ` ( S ` c ) ) = i /\ ( S ` c ) = ( S ` d ) ) ) /\ -. ( c ` 0 ) = ( d ` 0 ) ) -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
42 |
|
simpl3l |
|- ( ( ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( c e. dom S /\ d e. dom S ) /\ ( ( # ` ( S ` c ) ) = i /\ ( S ` c ) = ( S ` d ) ) ) /\ -. ( c ` 0 ) = ( d ` 0 ) ) -> ( # ` ( S ` c ) ) = i ) |
43 |
|
breq2 |
|- ( ( # ` ( S ` c ) ) = i -> ( ( # ` ( S ` a ) ) < ( # ` ( S ` c ) ) <-> ( # ` ( S ` a ) ) < i ) ) |
44 |
43
|
imbi1d |
|- ( ( # ` ( S ` c ) ) = i -> ( ( ( # ` ( S ` a ) ) < ( # ` ( S ` c ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
45 |
44
|
2ralbidv |
|- ( ( # ` ( S ` c ) ) = i -> ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` c ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
46 |
42 45
|
syl |
|- ( ( ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( c e. dom S /\ d e. dom S ) /\ ( ( # ` ( S ` c ) ) = i /\ ( S ` c ) = ( S ` d ) ) ) /\ -. ( c ` 0 ) = ( d ` 0 ) ) -> ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` c ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
47 |
41 46
|
mpbird |
|- ( ( ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( c e. dom S /\ d e. dom S ) /\ ( ( # ` ( S ` c ) ) = i /\ ( S ` c ) = ( S ` d ) ) ) /\ -. ( c ` 0 ) = ( d ` 0 ) ) -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` c ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
48 |
|
simpl2l |
|- ( ( ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( c e. dom S /\ d e. dom S ) /\ ( ( # ` ( S ` c ) ) = i /\ ( S ` c ) = ( S ` d ) ) ) /\ -. ( c ` 0 ) = ( d ` 0 ) ) -> c e. dom S ) |
49 |
|
simpl2r |
|- ( ( ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( c e. dom S /\ d e. dom S ) /\ ( ( # ` ( S ` c ) ) = i /\ ( S ` c ) = ( S ` d ) ) ) /\ -. ( c ` 0 ) = ( d ` 0 ) ) -> d e. dom S ) |
50 |
|
simpl3r |
|- ( ( ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( c e. dom S /\ d e. dom S ) /\ ( ( # ` ( S ` c ) ) = i /\ ( S ` c ) = ( S ` d ) ) ) /\ -. ( c ` 0 ) = ( d ` 0 ) ) -> ( S ` c ) = ( S ` d ) ) |
51 |
|
simpr |
|- ( ( ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( c e. dom S /\ d e. dom S ) /\ ( ( # ` ( S ` c ) ) = i /\ ( S ` c ) = ( S ` d ) ) ) /\ -. ( c ` 0 ) = ( d ` 0 ) ) -> -. ( c ` 0 ) = ( d ` 0 ) ) |
52 |
1 2 3 4 5 6 47 48 49 50 51
|
efgredlem |
|- -. ( ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( c e. dom S /\ d e. dom S ) /\ ( ( # ` ( S ` c ) ) = i /\ ( S ` c ) = ( S ` d ) ) ) /\ -. ( c ` 0 ) = ( d ` 0 ) ) |
53 |
|
iman |
|- ( ( ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( c e. dom S /\ d e. dom S ) /\ ( ( # ` ( S ` c ) ) = i /\ ( S ` c ) = ( S ` d ) ) ) -> ( c ` 0 ) = ( d ` 0 ) ) <-> -. ( ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( c e. dom S /\ d e. dom S ) /\ ( ( # ` ( S ` c ) ) = i /\ ( S ` c ) = ( S ` d ) ) ) /\ -. ( c ` 0 ) = ( d ` 0 ) ) ) |
54 |
52 53
|
mpbir |
|- ( ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( c e. dom S /\ d e. dom S ) /\ ( ( # ` ( S ` c ) ) = i /\ ( S ` c ) = ( S ` d ) ) ) -> ( c ` 0 ) = ( d ` 0 ) ) |
55 |
54
|
3expia |
|- ( ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( c e. dom S /\ d e. dom S ) ) -> ( ( ( # ` ( S ` c ) ) = i /\ ( S ` c ) = ( S ` d ) ) -> ( c ` 0 ) = ( d ` 0 ) ) ) |
56 |
55
|
expd |
|- ( ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( c e. dom S /\ d e. dom S ) ) -> ( ( # ` ( S ` c ) ) = i -> ( ( S ` c ) = ( S ` d ) -> ( c ` 0 ) = ( d ` 0 ) ) ) ) |
57 |
56
|
ralrimivva |
|- ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) -> A. c e. dom S A. d e. dom S ( ( # ` ( S ` c ) ) = i -> ( ( S ` c ) = ( S ` d ) -> ( c ` 0 ) = ( d ` 0 ) ) ) ) |
58 |
|
2fveq3 |
|- ( c = a -> ( # ` ( S ` c ) ) = ( # ` ( S ` a ) ) ) |
59 |
58
|
eqeq1d |
|- ( c = a -> ( ( # ` ( S ` c ) ) = i <-> ( # ` ( S ` a ) ) = i ) ) |
60 |
|
fveqeq2 |
|- ( c = a -> ( ( S ` c ) = ( S ` d ) <-> ( S ` a ) = ( S ` d ) ) ) |
61 |
|
fveq1 |
|- ( c = a -> ( c ` 0 ) = ( a ` 0 ) ) |
62 |
61
|
eqeq1d |
|- ( c = a -> ( ( c ` 0 ) = ( d ` 0 ) <-> ( a ` 0 ) = ( d ` 0 ) ) ) |
63 |
60 62
|
imbi12d |
|- ( c = a -> ( ( ( S ` c ) = ( S ` d ) -> ( c ` 0 ) = ( d ` 0 ) ) <-> ( ( S ` a ) = ( S ` d ) -> ( a ` 0 ) = ( d ` 0 ) ) ) ) |
64 |
59 63
|
imbi12d |
|- ( c = a -> ( ( ( # ` ( S ` c ) ) = i -> ( ( S ` c ) = ( S ` d ) -> ( c ` 0 ) = ( d ` 0 ) ) ) <-> ( ( # ` ( S ` a ) ) = i -> ( ( S ` a ) = ( S ` d ) -> ( a ` 0 ) = ( d ` 0 ) ) ) ) ) |
65 |
|
fveq2 |
|- ( d = b -> ( S ` d ) = ( S ` b ) ) |
66 |
65
|
eqeq2d |
|- ( d = b -> ( ( S ` a ) = ( S ` d ) <-> ( S ` a ) = ( S ` b ) ) ) |
67 |
|
fveq1 |
|- ( d = b -> ( d ` 0 ) = ( b ` 0 ) ) |
68 |
67
|
eqeq2d |
|- ( d = b -> ( ( a ` 0 ) = ( d ` 0 ) <-> ( a ` 0 ) = ( b ` 0 ) ) ) |
69 |
66 68
|
imbi12d |
|- ( d = b -> ( ( ( S ` a ) = ( S ` d ) -> ( a ` 0 ) = ( d ` 0 ) ) <-> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
70 |
69
|
imbi2d |
|- ( d = b -> ( ( ( # ` ( S ` a ) ) = i -> ( ( S ` a ) = ( S ` d ) -> ( a ` 0 ) = ( d ` 0 ) ) ) <-> ( ( # ` ( S ` a ) ) = i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
71 |
64 70
|
cbvral2vw |
|- ( A. c e. dom S A. d e. dom S ( ( # ` ( S ` c ) ) = i -> ( ( S ` c ) = ( S ` d ) -> ( c ` 0 ) = ( d ` 0 ) ) ) <-> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) = i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
72 |
57 71
|
sylib |
|- ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) = i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
73 |
72
|
ancli |
|- ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) -> ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) = i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
74 |
35
|
adantr |
|- ( ( a e. dom S /\ b e. dom S ) -> ( # ` ( S ` a ) ) e. NN0 ) |
75 |
|
nn0leltp1 |
|- ( ( ( # ` ( S ` a ) ) e. NN0 /\ i e. NN0 ) -> ( ( # ` ( S ` a ) ) <_ i <-> ( # ` ( S ` a ) ) < ( i + 1 ) ) ) |
76 |
|
nn0re |
|- ( ( # ` ( S ` a ) ) e. NN0 -> ( # ` ( S ` a ) ) e. RR ) |
77 |
|
nn0re |
|- ( i e. NN0 -> i e. RR ) |
78 |
|
leloe |
|- ( ( ( # ` ( S ` a ) ) e. RR /\ i e. RR ) -> ( ( # ` ( S ` a ) ) <_ i <-> ( ( # ` ( S ` a ) ) < i \/ ( # ` ( S ` a ) ) = i ) ) ) |
79 |
76 77 78
|
syl2an |
|- ( ( ( # ` ( S ` a ) ) e. NN0 /\ i e. NN0 ) -> ( ( # ` ( S ` a ) ) <_ i <-> ( ( # ` ( S ` a ) ) < i \/ ( # ` ( S ` a ) ) = i ) ) ) |
80 |
75 79
|
bitr3d |
|- ( ( ( # ` ( S ` a ) ) e. NN0 /\ i e. NN0 ) -> ( ( # ` ( S ` a ) ) < ( i + 1 ) <-> ( ( # ` ( S ` a ) ) < i \/ ( # ` ( S ` a ) ) = i ) ) ) |
81 |
80
|
ancoms |
|- ( ( i e. NN0 /\ ( # ` ( S ` a ) ) e. NN0 ) -> ( ( # ` ( S ` a ) ) < ( i + 1 ) <-> ( ( # ` ( S ` a ) ) < i \/ ( # ` ( S ` a ) ) = i ) ) ) |
82 |
74 81
|
sylan2 |
|- ( ( i e. NN0 /\ ( a e. dom S /\ b e. dom S ) ) -> ( ( # ` ( S ` a ) ) < ( i + 1 ) <-> ( ( # ` ( S ` a ) ) < i \/ ( # ` ( S ` a ) ) = i ) ) ) |
83 |
82
|
imbi1d |
|- ( ( i e. NN0 /\ ( a e. dom S /\ b e. dom S ) ) -> ( ( ( # ` ( S ` a ) ) < ( i + 1 ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> ( ( ( # ` ( S ` a ) ) < i \/ ( # ` ( S ` a ) ) = i ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
84 |
|
jaob |
|- ( ( ( ( # ` ( S ` a ) ) < i \/ ( # ` ( S ` a ) ) = i ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> ( ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( ( # ` ( S ` a ) ) = i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
85 |
83 84
|
bitrdi |
|- ( ( i e. NN0 /\ ( a e. dom S /\ b e. dom S ) ) -> ( ( ( # ` ( S ` a ) ) < ( i + 1 ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> ( ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( ( # ` ( S ` a ) ) = i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) ) |
86 |
85
|
2ralbidva |
|- ( i e. NN0 -> ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( i + 1 ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> A. a e. dom S A. b e. dom S ( ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( ( # ` ( S ` a ) ) = i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) ) |
87 |
|
r19.26-2 |
|- ( A. a e. dom S A. b e. dom S ( ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ ( ( # ` ( S ` a ) ) = i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) <-> ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) = i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
88 |
86 87
|
bitrdi |
|- ( i e. NN0 -> ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( i + 1 ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) /\ A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) = i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) ) |
89 |
73 88
|
syl5ibr |
|- ( i e. NN0 -> ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < i -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( i + 1 ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
90 |
22 25 28 31 40 89
|
nn0ind |
|- ( ( ( # ` ( S ` A ) ) + 1 ) e. NN0 -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( ( # ` ( S ` A ) ) + 1 ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
91 |
19 90
|
syl |
|- ( ( A e. dom S /\ B e. dom S ) -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( ( # ` ( S ` A ) ) + 1 ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
92 |
17
|
nn0red |
|- ( ( A e. dom S /\ B e. dom S ) -> ( # ` ( S ` A ) ) e. RR ) |
93 |
92
|
ltp1d |
|- ( ( A e. dom S /\ B e. dom S ) -> ( # ` ( S ` A ) ) < ( ( # ` ( S ` A ) ) + 1 ) ) |
94 |
|
2fveq3 |
|- ( a = A -> ( # ` ( S ` a ) ) = ( # ` ( S ` A ) ) ) |
95 |
94
|
breq1d |
|- ( a = A -> ( ( # ` ( S ` a ) ) < ( ( # ` ( S ` A ) ) + 1 ) <-> ( # ` ( S ` A ) ) < ( ( # ` ( S ` A ) ) + 1 ) ) ) |
96 |
|
fveqeq2 |
|- ( a = A -> ( ( S ` a ) = ( S ` b ) <-> ( S ` A ) = ( S ` b ) ) ) |
97 |
|
fveq1 |
|- ( a = A -> ( a ` 0 ) = ( A ` 0 ) ) |
98 |
97
|
eqeq1d |
|- ( a = A -> ( ( a ` 0 ) = ( b ` 0 ) <-> ( A ` 0 ) = ( b ` 0 ) ) ) |
99 |
96 98
|
imbi12d |
|- ( a = A -> ( ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) <-> ( ( S ` A ) = ( S ` b ) -> ( A ` 0 ) = ( b ` 0 ) ) ) ) |
100 |
95 99
|
imbi12d |
|- ( a = A -> ( ( ( # ` ( S ` a ) ) < ( ( # ` ( S ` A ) ) + 1 ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` A ) ) < ( ( # ` ( S ` A ) ) + 1 ) -> ( ( S ` A ) = ( S ` b ) -> ( A ` 0 ) = ( b ` 0 ) ) ) ) ) |
101 |
|
fveq2 |
|- ( b = B -> ( S ` b ) = ( S ` B ) ) |
102 |
101
|
eqeq2d |
|- ( b = B -> ( ( S ` A ) = ( S ` b ) <-> ( S ` A ) = ( S ` B ) ) ) |
103 |
|
fveq1 |
|- ( b = B -> ( b ` 0 ) = ( B ` 0 ) ) |
104 |
103
|
eqeq2d |
|- ( b = B -> ( ( A ` 0 ) = ( b ` 0 ) <-> ( A ` 0 ) = ( B ` 0 ) ) ) |
105 |
102 104
|
imbi12d |
|- ( b = B -> ( ( ( S ` A ) = ( S ` b ) -> ( A ` 0 ) = ( b ` 0 ) ) <-> ( ( S ` A ) = ( S ` B ) -> ( A ` 0 ) = ( B ` 0 ) ) ) ) |
106 |
105
|
imbi2d |
|- ( b = B -> ( ( ( # ` ( S ` A ) ) < ( ( # ` ( S ` A ) ) + 1 ) -> ( ( S ` A ) = ( S ` b ) -> ( A ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` A ) ) < ( ( # ` ( S ` A ) ) + 1 ) -> ( ( S ` A ) = ( S ` B ) -> ( A ` 0 ) = ( B ` 0 ) ) ) ) ) |
107 |
100 106
|
rspc2v |
|- ( ( A e. dom S /\ B e. dom S ) -> ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( ( # ` ( S ` A ) ) + 1 ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) -> ( ( # ` ( S ` A ) ) < ( ( # ` ( S ` A ) ) + 1 ) -> ( ( S ` A ) = ( S ` B ) -> ( A ` 0 ) = ( B ` 0 ) ) ) ) ) |
108 |
91 93 107
|
mp2d |
|- ( ( A e. dom S /\ B e. dom S ) -> ( ( S ` A ) = ( S ` B ) -> ( A ` 0 ) = ( B ` 0 ) ) ) |
109 |
108
|
3impia |
|- ( ( A e. dom S /\ B e. dom S /\ ( S ` A ) = ( S ` B ) ) -> ( A ` 0 ) = ( B ` 0 ) ) |