Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
|- W = ( _I ` Word ( I X. 2o ) ) |
2 |
|
efgval.r |
|- .~ = ( ~FG ` I ) |
3 |
|
efgval2.m |
|- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
4 |
|
efgval2.t |
|- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
5 |
|
efgred.d |
|- D = ( W \ U_ x e. W ran ( T ` x ) ) |
6 |
|
efgred.s |
|- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
7 |
1 2 3 4 5 6
|
efgsfo |
|- S : dom S -onto-> W |
8 |
|
fof |
|- ( S : dom S -onto-> W -> S : dom S --> W ) |
9 |
7 8
|
ax-mp |
|- S : dom S --> W |
10 |
9
|
ffvelrni |
|- ( B e. dom S -> ( S ` B ) e. W ) |
11 |
10
|
ad2antlr |
|- ( ( ( A e. dom S /\ B e. dom S ) /\ ( S ` A ) .~ ( S ` B ) ) -> ( S ` B ) e. W ) |
12 |
1 2 3 4 5 6
|
efgredeu |
|- ( ( S ` B ) e. W -> E! d e. D d .~ ( S ` B ) ) |
13 |
|
reurmo |
|- ( E! d e. D d .~ ( S ` B ) -> E* d e. D d .~ ( S ` B ) ) |
14 |
11 12 13
|
3syl |
|- ( ( ( A e. dom S /\ B e. dom S ) /\ ( S ` A ) .~ ( S ` B ) ) -> E* d e. D d .~ ( S ` B ) ) |
15 |
1 2 3 4 5 6
|
efgsdm |
|- ( A e. dom S <-> ( A e. ( Word W \ { (/) } ) /\ ( A ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` A ) ) ( A ` i ) e. ran ( T ` ( A ` ( i - 1 ) ) ) ) ) |
16 |
15
|
simp2bi |
|- ( A e. dom S -> ( A ` 0 ) e. D ) |
17 |
16
|
ad2antrr |
|- ( ( ( A e. dom S /\ B e. dom S ) /\ ( S ` A ) .~ ( S ` B ) ) -> ( A ` 0 ) e. D ) |
18 |
1 2
|
efger |
|- .~ Er W |
19 |
18
|
a1i |
|- ( ( ( A e. dom S /\ B e. dom S ) /\ ( S ` A ) .~ ( S ` B ) ) -> .~ Er W ) |
20 |
1 2 3 4 5 6
|
efgsrel |
|- ( A e. dom S -> ( A ` 0 ) .~ ( S ` A ) ) |
21 |
20
|
ad2antrr |
|- ( ( ( A e. dom S /\ B e. dom S ) /\ ( S ` A ) .~ ( S ` B ) ) -> ( A ` 0 ) .~ ( S ` A ) ) |
22 |
|
simpr |
|- ( ( ( A e. dom S /\ B e. dom S ) /\ ( S ` A ) .~ ( S ` B ) ) -> ( S ` A ) .~ ( S ` B ) ) |
23 |
19 21 22
|
ertrd |
|- ( ( ( A e. dom S /\ B e. dom S ) /\ ( S ` A ) .~ ( S ` B ) ) -> ( A ` 0 ) .~ ( S ` B ) ) |
24 |
1 2 3 4 5 6
|
efgsdm |
|- ( B e. dom S <-> ( B e. ( Word W \ { (/) } ) /\ ( B ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` B ) ) ( B ` i ) e. ran ( T ` ( B ` ( i - 1 ) ) ) ) ) |
25 |
24
|
simp2bi |
|- ( B e. dom S -> ( B ` 0 ) e. D ) |
26 |
25
|
ad2antlr |
|- ( ( ( A e. dom S /\ B e. dom S ) /\ ( S ` A ) .~ ( S ` B ) ) -> ( B ` 0 ) e. D ) |
27 |
1 2 3 4 5 6
|
efgsrel |
|- ( B e. dom S -> ( B ` 0 ) .~ ( S ` B ) ) |
28 |
27
|
ad2antlr |
|- ( ( ( A e. dom S /\ B e. dom S ) /\ ( S ` A ) .~ ( S ` B ) ) -> ( B ` 0 ) .~ ( S ` B ) ) |
29 |
|
breq1 |
|- ( d = ( A ` 0 ) -> ( d .~ ( S ` B ) <-> ( A ` 0 ) .~ ( S ` B ) ) ) |
30 |
|
breq1 |
|- ( d = ( B ` 0 ) -> ( d .~ ( S ` B ) <-> ( B ` 0 ) .~ ( S ` B ) ) ) |
31 |
29 30
|
rmoi |
|- ( ( E* d e. D d .~ ( S ` B ) /\ ( ( A ` 0 ) e. D /\ ( A ` 0 ) .~ ( S ` B ) ) /\ ( ( B ` 0 ) e. D /\ ( B ` 0 ) .~ ( S ` B ) ) ) -> ( A ` 0 ) = ( B ` 0 ) ) |
32 |
14 17 23 26 28 31
|
syl122anc |
|- ( ( ( A e. dom S /\ B e. dom S ) /\ ( S ` A ) .~ ( S ` B ) ) -> ( A ` 0 ) = ( B ` 0 ) ) |
33 |
18
|
a1i |
|- ( ( ( A e. dom S /\ B e. dom S ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> .~ Er W ) |
34 |
20
|
ad2antrr |
|- ( ( ( A e. dom S /\ B e. dom S ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( A ` 0 ) .~ ( S ` A ) ) |
35 |
|
simpr |
|- ( ( ( A e. dom S /\ B e. dom S ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( A ` 0 ) = ( B ` 0 ) ) |
36 |
27
|
ad2antlr |
|- ( ( ( A e. dom S /\ B e. dom S ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( B ` 0 ) .~ ( S ` B ) ) |
37 |
35 36
|
eqbrtrd |
|- ( ( ( A e. dom S /\ B e. dom S ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( A ` 0 ) .~ ( S ` B ) ) |
38 |
33 34 37
|
ertr3d |
|- ( ( ( A e. dom S /\ B e. dom S ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( S ` A ) .~ ( S ` B ) ) |
39 |
32 38
|
impbida |
|- ( ( A e. dom S /\ B e. dom S ) -> ( ( S ` A ) .~ ( S ` B ) <-> ( A ` 0 ) = ( B ` 0 ) ) ) |