Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
|- W = ( _I ` Word ( I X. 2o ) ) |
2 |
|
efgval.r |
|- .~ = ( ~FG ` I ) |
3 |
|
efgval2.m |
|- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
4 |
|
efgval2.t |
|- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
5 |
|
efgred.d |
|- D = ( W \ U_ x e. W ran ( T ` x ) ) |
6 |
|
efgred.s |
|- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
7 |
1 2 3 4 5 6
|
efgsfo |
|- S : dom S -onto-> W |
8 |
|
foelrn |
|- ( ( S : dom S -onto-> W /\ A e. W ) -> E. a e. dom S A = ( S ` a ) ) |
9 |
7 8
|
mpan |
|- ( A e. W -> E. a e. dom S A = ( S ` a ) ) |
10 |
1 2 3 4 5 6
|
efgsdm |
|- ( a e. dom S <-> ( a e. ( Word W \ { (/) } ) /\ ( a ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` a ) ) ( a ` i ) e. ran ( T ` ( a ` ( i - 1 ) ) ) ) ) |
11 |
10
|
simp2bi |
|- ( a e. dom S -> ( a ` 0 ) e. D ) |
12 |
1 2 3 4 5 6
|
efgsrel |
|- ( a e. dom S -> ( a ` 0 ) .~ ( S ` a ) ) |
13 |
12
|
adantl |
|- ( ( A e. W /\ a e. dom S ) -> ( a ` 0 ) .~ ( S ` a ) ) |
14 |
|
breq1 |
|- ( d = ( a ` 0 ) -> ( d .~ ( S ` a ) <-> ( a ` 0 ) .~ ( S ` a ) ) ) |
15 |
14
|
rspcev |
|- ( ( ( a ` 0 ) e. D /\ ( a ` 0 ) .~ ( S ` a ) ) -> E. d e. D d .~ ( S ` a ) ) |
16 |
11 13 15
|
syl2an2 |
|- ( ( A e. W /\ a e. dom S ) -> E. d e. D d .~ ( S ` a ) ) |
17 |
|
breq2 |
|- ( A = ( S ` a ) -> ( d .~ A <-> d .~ ( S ` a ) ) ) |
18 |
17
|
rexbidv |
|- ( A = ( S ` a ) -> ( E. d e. D d .~ A <-> E. d e. D d .~ ( S ` a ) ) ) |
19 |
16 18
|
syl5ibrcom |
|- ( ( A e. W /\ a e. dom S ) -> ( A = ( S ` a ) -> E. d e. D d .~ A ) ) |
20 |
19
|
rexlimdva |
|- ( A e. W -> ( E. a e. dom S A = ( S ` a ) -> E. d e. D d .~ A ) ) |
21 |
9 20
|
mpd |
|- ( A e. W -> E. d e. D d .~ A ) |
22 |
1 2
|
efger |
|- .~ Er W |
23 |
22
|
a1i |
|- ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) -> .~ Er W ) |
24 |
|
simprl |
|- ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) -> d .~ A ) |
25 |
|
simprr |
|- ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) -> c .~ A ) |
26 |
23 24 25
|
ertr4d |
|- ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) -> d .~ c ) |
27 |
1 2 3 4 5 6
|
efgrelex |
|- ( d .~ c -> E. a e. ( `' S " { d } ) E. b e. ( `' S " { c } ) ( a ` 0 ) = ( b ` 0 ) ) |
28 |
|
fofn |
|- ( S : dom S -onto-> W -> S Fn dom S ) |
29 |
|
fniniseg |
|- ( S Fn dom S -> ( a e. ( `' S " { d } ) <-> ( a e. dom S /\ ( S ` a ) = d ) ) ) |
30 |
7 28 29
|
mp2b |
|- ( a e. ( `' S " { d } ) <-> ( a e. dom S /\ ( S ` a ) = d ) ) |
31 |
30
|
simplbi |
|- ( a e. ( `' S " { d } ) -> a e. dom S ) |
32 |
31
|
ad2antrl |
|- ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> a e. dom S ) |
33 |
1 2 3 4 5 6
|
efgsval |
|- ( a e. dom S -> ( S ` a ) = ( a ` ( ( # ` a ) - 1 ) ) ) |
34 |
32 33
|
syl |
|- ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( S ` a ) = ( a ` ( ( # ` a ) - 1 ) ) ) |
35 |
30
|
simprbi |
|- ( a e. ( `' S " { d } ) -> ( S ` a ) = d ) |
36 |
35
|
ad2antrl |
|- ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( S ` a ) = d ) |
37 |
|
simpllr |
|- ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( d e. D /\ c e. D ) ) |
38 |
37
|
simpld |
|- ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> d e. D ) |
39 |
36 38
|
eqeltrd |
|- ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( S ` a ) e. D ) |
40 |
1 2 3 4 5 6
|
efgs1b |
|- ( a e. dom S -> ( ( S ` a ) e. D <-> ( # ` a ) = 1 ) ) |
41 |
32 40
|
syl |
|- ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( ( S ` a ) e. D <-> ( # ` a ) = 1 ) ) |
42 |
39 41
|
mpbid |
|- ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( # ` a ) = 1 ) |
43 |
42
|
oveq1d |
|- ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( ( # ` a ) - 1 ) = ( 1 - 1 ) ) |
44 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
45 |
43 44
|
eqtrdi |
|- ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( ( # ` a ) - 1 ) = 0 ) |
46 |
45
|
fveq2d |
|- ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( a ` ( ( # ` a ) - 1 ) ) = ( a ` 0 ) ) |
47 |
34 36 46
|
3eqtr3rd |
|- ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( a ` 0 ) = d ) |
48 |
|
fniniseg |
|- ( S Fn dom S -> ( b e. ( `' S " { c } ) <-> ( b e. dom S /\ ( S ` b ) = c ) ) ) |
49 |
7 28 48
|
mp2b |
|- ( b e. ( `' S " { c } ) <-> ( b e. dom S /\ ( S ` b ) = c ) ) |
50 |
49
|
simplbi |
|- ( b e. ( `' S " { c } ) -> b e. dom S ) |
51 |
50
|
ad2antll |
|- ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> b e. dom S ) |
52 |
1 2 3 4 5 6
|
efgsval |
|- ( b e. dom S -> ( S ` b ) = ( b ` ( ( # ` b ) - 1 ) ) ) |
53 |
51 52
|
syl |
|- ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( S ` b ) = ( b ` ( ( # ` b ) - 1 ) ) ) |
54 |
49
|
simprbi |
|- ( b e. ( `' S " { c } ) -> ( S ` b ) = c ) |
55 |
54
|
ad2antll |
|- ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( S ` b ) = c ) |
56 |
37
|
simprd |
|- ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> c e. D ) |
57 |
55 56
|
eqeltrd |
|- ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( S ` b ) e. D ) |
58 |
1 2 3 4 5 6
|
efgs1b |
|- ( b e. dom S -> ( ( S ` b ) e. D <-> ( # ` b ) = 1 ) ) |
59 |
51 58
|
syl |
|- ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( ( S ` b ) e. D <-> ( # ` b ) = 1 ) ) |
60 |
57 59
|
mpbid |
|- ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( # ` b ) = 1 ) |
61 |
60
|
oveq1d |
|- ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( ( # ` b ) - 1 ) = ( 1 - 1 ) ) |
62 |
61 44
|
eqtrdi |
|- ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( ( # ` b ) - 1 ) = 0 ) |
63 |
62
|
fveq2d |
|- ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( b ` ( ( # ` b ) - 1 ) ) = ( b ` 0 ) ) |
64 |
53 55 63
|
3eqtr3rd |
|- ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( b ` 0 ) = c ) |
65 |
47 64
|
eqeq12d |
|- ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( ( a ` 0 ) = ( b ` 0 ) <-> d = c ) ) |
66 |
65
|
biimpd |
|- ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( ( a ` 0 ) = ( b ` 0 ) -> d = c ) ) |
67 |
66
|
rexlimdvva |
|- ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) -> ( E. a e. ( `' S " { d } ) E. b e. ( `' S " { c } ) ( a ` 0 ) = ( b ` 0 ) -> d = c ) ) |
68 |
27 67
|
syl5 |
|- ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) -> ( d .~ c -> d = c ) ) |
69 |
26 68
|
mpd |
|- ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) -> d = c ) |
70 |
69
|
ex |
|- ( ( A e. W /\ ( d e. D /\ c e. D ) ) -> ( ( d .~ A /\ c .~ A ) -> d = c ) ) |
71 |
70
|
ralrimivva |
|- ( A e. W -> A. d e. D A. c e. D ( ( d .~ A /\ c .~ A ) -> d = c ) ) |
72 |
|
breq1 |
|- ( d = c -> ( d .~ A <-> c .~ A ) ) |
73 |
72
|
reu4 |
|- ( E! d e. D d .~ A <-> ( E. d e. D d .~ A /\ A. d e. D A. c e. D ( ( d .~ A /\ c .~ A ) -> d = c ) ) ) |
74 |
21 71 73
|
sylanbrc |
|- ( A e. W -> E! d e. D d .~ A ) |