| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgval.w |  |-  W = ( _I ` Word ( I X. 2o ) ) | 
						
							| 2 |  | efgval.r |  |-  .~ = ( ~FG ` I ) | 
						
							| 3 |  | efgval2.m |  |-  M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) | 
						
							| 4 |  | efgval2.t |  |-  T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) | 
						
							| 5 |  | efgred.d |  |-  D = ( W \ U_ x e. W ran ( T ` x ) ) | 
						
							| 6 |  | efgred.s |  |-  S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) | 
						
							| 7 | 1 2 3 4 5 6 | efgsfo |  |-  S : dom S -onto-> W | 
						
							| 8 |  | foelrn |  |-  ( ( S : dom S -onto-> W /\ A e. W ) -> E. a e. dom S A = ( S ` a ) ) | 
						
							| 9 | 7 8 | mpan |  |-  ( A e. W -> E. a e. dom S A = ( S ` a ) ) | 
						
							| 10 | 1 2 3 4 5 6 | efgsdm |  |-  ( a e. dom S <-> ( a e. ( Word W \ { (/) } ) /\ ( a ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` a ) ) ( a ` i ) e. ran ( T ` ( a ` ( i - 1 ) ) ) ) ) | 
						
							| 11 | 10 | simp2bi |  |-  ( a e. dom S -> ( a ` 0 ) e. D ) | 
						
							| 12 | 1 2 3 4 5 6 | efgsrel |  |-  ( a e. dom S -> ( a ` 0 ) .~ ( S ` a ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( A e. W /\ a e. dom S ) -> ( a ` 0 ) .~ ( S ` a ) ) | 
						
							| 14 |  | breq1 |  |-  ( d = ( a ` 0 ) -> ( d .~ ( S ` a ) <-> ( a ` 0 ) .~ ( S ` a ) ) ) | 
						
							| 15 | 14 | rspcev |  |-  ( ( ( a ` 0 ) e. D /\ ( a ` 0 ) .~ ( S ` a ) ) -> E. d e. D d .~ ( S ` a ) ) | 
						
							| 16 | 11 13 15 | syl2an2 |  |-  ( ( A e. W /\ a e. dom S ) -> E. d e. D d .~ ( S ` a ) ) | 
						
							| 17 |  | breq2 |  |-  ( A = ( S ` a ) -> ( d .~ A <-> d .~ ( S ` a ) ) ) | 
						
							| 18 | 17 | rexbidv |  |-  ( A = ( S ` a ) -> ( E. d e. D d .~ A <-> E. d e. D d .~ ( S ` a ) ) ) | 
						
							| 19 | 16 18 | syl5ibrcom |  |-  ( ( A e. W /\ a e. dom S ) -> ( A = ( S ` a ) -> E. d e. D d .~ A ) ) | 
						
							| 20 | 19 | rexlimdva |  |-  ( A e. W -> ( E. a e. dom S A = ( S ` a ) -> E. d e. D d .~ A ) ) | 
						
							| 21 | 9 20 | mpd |  |-  ( A e. W -> E. d e. D d .~ A ) | 
						
							| 22 | 1 2 | efger |  |-  .~ Er W | 
						
							| 23 | 22 | a1i |  |-  ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) -> .~ Er W ) | 
						
							| 24 |  | simprl |  |-  ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) -> d .~ A ) | 
						
							| 25 |  | simprr |  |-  ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) -> c .~ A ) | 
						
							| 26 | 23 24 25 | ertr4d |  |-  ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) -> d .~ c ) | 
						
							| 27 | 1 2 3 4 5 6 | efgrelex |  |-  ( d .~ c -> E. a e. ( `' S " { d } ) E. b e. ( `' S " { c } ) ( a ` 0 ) = ( b ` 0 ) ) | 
						
							| 28 |  | fofn |  |-  ( S : dom S -onto-> W -> S Fn dom S ) | 
						
							| 29 |  | fniniseg |  |-  ( S Fn dom S -> ( a e. ( `' S " { d } ) <-> ( a e. dom S /\ ( S ` a ) = d ) ) ) | 
						
							| 30 | 7 28 29 | mp2b |  |-  ( a e. ( `' S " { d } ) <-> ( a e. dom S /\ ( S ` a ) = d ) ) | 
						
							| 31 | 30 | simplbi |  |-  ( a e. ( `' S " { d } ) -> a e. dom S ) | 
						
							| 32 | 31 | ad2antrl |  |-  ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> a e. dom S ) | 
						
							| 33 | 1 2 3 4 5 6 | efgsval |  |-  ( a e. dom S -> ( S ` a ) = ( a ` ( ( # ` a ) - 1 ) ) ) | 
						
							| 34 | 32 33 | syl |  |-  ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( S ` a ) = ( a ` ( ( # ` a ) - 1 ) ) ) | 
						
							| 35 | 30 | simprbi |  |-  ( a e. ( `' S " { d } ) -> ( S ` a ) = d ) | 
						
							| 36 | 35 | ad2antrl |  |-  ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( S ` a ) = d ) | 
						
							| 37 |  | simpllr |  |-  ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( d e. D /\ c e. D ) ) | 
						
							| 38 | 37 | simpld |  |-  ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> d e. D ) | 
						
							| 39 | 36 38 | eqeltrd |  |-  ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( S ` a ) e. D ) | 
						
							| 40 | 1 2 3 4 5 6 | efgs1b |  |-  ( a e. dom S -> ( ( S ` a ) e. D <-> ( # ` a ) = 1 ) ) | 
						
							| 41 | 32 40 | syl |  |-  ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( ( S ` a ) e. D <-> ( # ` a ) = 1 ) ) | 
						
							| 42 | 39 41 | mpbid |  |-  ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( # ` a ) = 1 ) | 
						
							| 43 | 42 | oveq1d |  |-  ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( ( # ` a ) - 1 ) = ( 1 - 1 ) ) | 
						
							| 44 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 45 | 43 44 | eqtrdi |  |-  ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( ( # ` a ) - 1 ) = 0 ) | 
						
							| 46 | 45 | fveq2d |  |-  ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( a ` ( ( # ` a ) - 1 ) ) = ( a ` 0 ) ) | 
						
							| 47 | 34 36 46 | 3eqtr3rd |  |-  ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( a ` 0 ) = d ) | 
						
							| 48 |  | fniniseg |  |-  ( S Fn dom S -> ( b e. ( `' S " { c } ) <-> ( b e. dom S /\ ( S ` b ) = c ) ) ) | 
						
							| 49 | 7 28 48 | mp2b |  |-  ( b e. ( `' S " { c } ) <-> ( b e. dom S /\ ( S ` b ) = c ) ) | 
						
							| 50 | 49 | simplbi |  |-  ( b e. ( `' S " { c } ) -> b e. dom S ) | 
						
							| 51 | 50 | ad2antll |  |-  ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> b e. dom S ) | 
						
							| 52 | 1 2 3 4 5 6 | efgsval |  |-  ( b e. dom S -> ( S ` b ) = ( b ` ( ( # ` b ) - 1 ) ) ) | 
						
							| 53 | 51 52 | syl |  |-  ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( S ` b ) = ( b ` ( ( # ` b ) - 1 ) ) ) | 
						
							| 54 | 49 | simprbi |  |-  ( b e. ( `' S " { c } ) -> ( S ` b ) = c ) | 
						
							| 55 | 54 | ad2antll |  |-  ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( S ` b ) = c ) | 
						
							| 56 | 37 | simprd |  |-  ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> c e. D ) | 
						
							| 57 | 55 56 | eqeltrd |  |-  ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( S ` b ) e. D ) | 
						
							| 58 | 1 2 3 4 5 6 | efgs1b |  |-  ( b e. dom S -> ( ( S ` b ) e. D <-> ( # ` b ) = 1 ) ) | 
						
							| 59 | 51 58 | syl |  |-  ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( ( S ` b ) e. D <-> ( # ` b ) = 1 ) ) | 
						
							| 60 | 57 59 | mpbid |  |-  ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( # ` b ) = 1 ) | 
						
							| 61 | 60 | oveq1d |  |-  ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( ( # ` b ) - 1 ) = ( 1 - 1 ) ) | 
						
							| 62 | 61 44 | eqtrdi |  |-  ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( ( # ` b ) - 1 ) = 0 ) | 
						
							| 63 | 62 | fveq2d |  |-  ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( b ` ( ( # ` b ) - 1 ) ) = ( b ` 0 ) ) | 
						
							| 64 | 53 55 63 | 3eqtr3rd |  |-  ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( b ` 0 ) = c ) | 
						
							| 65 | 47 64 | eqeq12d |  |-  ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( ( a ` 0 ) = ( b ` 0 ) <-> d = c ) ) | 
						
							| 66 | 65 | biimpd |  |-  ( ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) /\ ( a e. ( `' S " { d } ) /\ b e. ( `' S " { c } ) ) ) -> ( ( a ` 0 ) = ( b ` 0 ) -> d = c ) ) | 
						
							| 67 | 66 | rexlimdvva |  |-  ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) -> ( E. a e. ( `' S " { d } ) E. b e. ( `' S " { c } ) ( a ` 0 ) = ( b ` 0 ) -> d = c ) ) | 
						
							| 68 | 27 67 | syl5 |  |-  ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) -> ( d .~ c -> d = c ) ) | 
						
							| 69 | 26 68 | mpd |  |-  ( ( ( A e. W /\ ( d e. D /\ c e. D ) ) /\ ( d .~ A /\ c .~ A ) ) -> d = c ) | 
						
							| 70 | 69 | ex |  |-  ( ( A e. W /\ ( d e. D /\ c e. D ) ) -> ( ( d .~ A /\ c .~ A ) -> d = c ) ) | 
						
							| 71 | 70 | ralrimivva |  |-  ( A e. W -> A. d e. D A. c e. D ( ( d .~ A /\ c .~ A ) -> d = c ) ) | 
						
							| 72 |  | breq1 |  |-  ( d = c -> ( d .~ A <-> c .~ A ) ) | 
						
							| 73 | 72 | reu4 |  |-  ( E! d e. D d .~ A <-> ( E. d e. D d .~ A /\ A. d e. D A. c e. D ( ( d .~ A /\ c .~ A ) -> d = c ) ) ) | 
						
							| 74 | 21 71 73 | sylanbrc |  |-  ( A e. W -> E! d e. D d .~ A ) |