Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
|- W = ( _I ` Word ( I X. 2o ) ) |
2 |
|
efgval.r |
|- .~ = ( ~FG ` I ) |
3 |
|
efgval2.m |
|- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
4 |
|
efgval2.t |
|- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
5 |
|
efgred.d |
|- D = ( W \ U_ x e. W ran ( T ` x ) ) |
6 |
|
efgred.s |
|- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
7 |
|
efgredlem.1 |
|- ( ph -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
8 |
|
efgredlem.2 |
|- ( ph -> A e. dom S ) |
9 |
|
efgredlem.3 |
|- ( ph -> B e. dom S ) |
10 |
|
efgredlem.4 |
|- ( ph -> ( S ` A ) = ( S ` B ) ) |
11 |
|
efgredlem.5 |
|- ( ph -> -. ( A ` 0 ) = ( B ` 0 ) ) |
12 |
|
fviss |
|- ( _I ` Word ( I X. 2o ) ) C_ Word ( I X. 2o ) |
13 |
1 12
|
eqsstri |
|- W C_ Word ( I X. 2o ) |
14 |
1 2 3 4 5 6
|
efgsdm |
|- ( A e. dom S <-> ( A e. ( Word W \ { (/) } ) /\ ( A ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` A ) ) ( A ` i ) e. ran ( T ` ( A ` ( i - 1 ) ) ) ) ) |
15 |
14
|
simp1bi |
|- ( A e. dom S -> A e. ( Word W \ { (/) } ) ) |
16 |
8 15
|
syl |
|- ( ph -> A e. ( Word W \ { (/) } ) ) |
17 |
16
|
eldifad |
|- ( ph -> A e. Word W ) |
18 |
|
wrdf |
|- ( A e. Word W -> A : ( 0 ..^ ( # ` A ) ) --> W ) |
19 |
17 18
|
syl |
|- ( ph -> A : ( 0 ..^ ( # ` A ) ) --> W ) |
20 |
1 2 3 4 5 6 7 8 9 10 11
|
efgredlema |
|- ( ph -> ( ( ( # ` A ) - 1 ) e. NN /\ ( ( # ` B ) - 1 ) e. NN ) ) |
21 |
20
|
simpld |
|- ( ph -> ( ( # ` A ) - 1 ) e. NN ) |
22 |
|
nnm1nn0 |
|- ( ( ( # ` A ) - 1 ) e. NN -> ( ( ( # ` A ) - 1 ) - 1 ) e. NN0 ) |
23 |
21 22
|
syl |
|- ( ph -> ( ( ( # ` A ) - 1 ) - 1 ) e. NN0 ) |
24 |
21
|
nnred |
|- ( ph -> ( ( # ` A ) - 1 ) e. RR ) |
25 |
24
|
lem1d |
|- ( ph -> ( ( ( # ` A ) - 1 ) - 1 ) <_ ( ( # ` A ) - 1 ) ) |
26 |
|
eldifsni |
|- ( A e. ( Word W \ { (/) } ) -> A =/= (/) ) |
27 |
8 15 26
|
3syl |
|- ( ph -> A =/= (/) ) |
28 |
|
wrdfin |
|- ( A e. Word W -> A e. Fin ) |
29 |
|
hashnncl |
|- ( A e. Fin -> ( ( # ` A ) e. NN <-> A =/= (/) ) ) |
30 |
17 28 29
|
3syl |
|- ( ph -> ( ( # ` A ) e. NN <-> A =/= (/) ) ) |
31 |
27 30
|
mpbird |
|- ( ph -> ( # ` A ) e. NN ) |
32 |
|
nnm1nn0 |
|- ( ( # ` A ) e. NN -> ( ( # ` A ) - 1 ) e. NN0 ) |
33 |
|
fznn0 |
|- ( ( ( # ` A ) - 1 ) e. NN0 -> ( ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ... ( ( # ` A ) - 1 ) ) <-> ( ( ( ( # ` A ) - 1 ) - 1 ) e. NN0 /\ ( ( ( # ` A ) - 1 ) - 1 ) <_ ( ( # ` A ) - 1 ) ) ) ) |
34 |
31 32 33
|
3syl |
|- ( ph -> ( ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ... ( ( # ` A ) - 1 ) ) <-> ( ( ( ( # ` A ) - 1 ) - 1 ) e. NN0 /\ ( ( ( # ` A ) - 1 ) - 1 ) <_ ( ( # ` A ) - 1 ) ) ) ) |
35 |
23 25 34
|
mpbir2and |
|- ( ph -> ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ... ( ( # ` A ) - 1 ) ) ) |
36 |
|
lencl |
|- ( A e. Word W -> ( # ` A ) e. NN0 ) |
37 |
17 36
|
syl |
|- ( ph -> ( # ` A ) e. NN0 ) |
38 |
37
|
nn0zd |
|- ( ph -> ( # ` A ) e. ZZ ) |
39 |
|
fzoval |
|- ( ( # ` A ) e. ZZ -> ( 0 ..^ ( # ` A ) ) = ( 0 ... ( ( # ` A ) - 1 ) ) ) |
40 |
38 39
|
syl |
|- ( ph -> ( 0 ..^ ( # ` A ) ) = ( 0 ... ( ( # ` A ) - 1 ) ) ) |
41 |
35 40
|
eleqtrrd |
|- ( ph -> ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ..^ ( # ` A ) ) ) |
42 |
19 41
|
ffvelrnd |
|- ( ph -> ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) e. W ) |
43 |
13 42
|
sselid |
|- ( ph -> ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) e. Word ( I X. 2o ) ) |
44 |
|
lencl |
|- ( ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) e. Word ( I X. 2o ) -> ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) e. NN0 ) |
45 |
43 44
|
syl |
|- ( ph -> ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) e. NN0 ) |
46 |
45
|
nn0red |
|- ( ph -> ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) e. RR ) |
47 |
|
2rp |
|- 2 e. RR+ |
48 |
|
ltaddrp |
|- ( ( ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) e. RR /\ 2 e. RR+ ) -> ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) < ( ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) + 2 ) ) |
49 |
46 47 48
|
sylancl |
|- ( ph -> ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) < ( ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) + 2 ) ) |
50 |
37
|
nn0red |
|- ( ph -> ( # ` A ) e. RR ) |
51 |
50
|
lem1d |
|- ( ph -> ( ( # ` A ) - 1 ) <_ ( # ` A ) ) |
52 |
|
fznn |
|- ( ( # ` A ) e. ZZ -> ( ( ( # ` A ) - 1 ) e. ( 1 ... ( # ` A ) ) <-> ( ( ( # ` A ) - 1 ) e. NN /\ ( ( # ` A ) - 1 ) <_ ( # ` A ) ) ) ) |
53 |
38 52
|
syl |
|- ( ph -> ( ( ( # ` A ) - 1 ) e. ( 1 ... ( # ` A ) ) <-> ( ( ( # ` A ) - 1 ) e. NN /\ ( ( # ` A ) - 1 ) <_ ( # ` A ) ) ) ) |
54 |
21 51 53
|
mpbir2and |
|- ( ph -> ( ( # ` A ) - 1 ) e. ( 1 ... ( # ` A ) ) ) |
55 |
1 2 3 4 5 6
|
efgsres |
|- ( ( A e. dom S /\ ( ( # ` A ) - 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) e. dom S ) |
56 |
8 54 55
|
syl2anc |
|- ( ph -> ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) e. dom S ) |
57 |
1 2 3 4 5 6
|
efgsval |
|- ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) e. dom S -> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) - 1 ) ) ) |
58 |
56 57
|
syl |
|- ( ph -> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) - 1 ) ) ) |
59 |
|
fz1ssfz0 |
|- ( 1 ... ( # ` A ) ) C_ ( 0 ... ( # ` A ) ) |
60 |
59 54
|
sselid |
|- ( ph -> ( ( # ` A ) - 1 ) e. ( 0 ... ( # ` A ) ) ) |
61 |
|
pfxres |
|- ( ( A e. Word W /\ ( ( # ` A ) - 1 ) e. ( 0 ... ( # ` A ) ) ) -> ( A prefix ( ( # ` A ) - 1 ) ) = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) |
62 |
17 60 61
|
syl2anc |
|- ( ph -> ( A prefix ( ( # ` A ) - 1 ) ) = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) |
63 |
62
|
fveq2d |
|- ( ph -> ( # ` ( A prefix ( ( # ` A ) - 1 ) ) ) = ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) |
64 |
|
pfxlen |
|- ( ( A e. Word W /\ ( ( # ` A ) - 1 ) e. ( 0 ... ( # ` A ) ) ) -> ( # ` ( A prefix ( ( # ` A ) - 1 ) ) ) = ( ( # ` A ) - 1 ) ) |
65 |
17 60 64
|
syl2anc |
|- ( ph -> ( # ` ( A prefix ( ( # ` A ) - 1 ) ) ) = ( ( # ` A ) - 1 ) ) |
66 |
63 65
|
eqtr3d |
|- ( ph -> ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( ( # ` A ) - 1 ) ) |
67 |
66
|
fvoveq1d |
|- ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) - 1 ) ) = ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) |
68 |
|
fzo0end |
|- ( ( ( # ` A ) - 1 ) e. NN -> ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) |
69 |
|
fvres |
|- ( ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` A ) - 1 ) ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) |
70 |
21 68 69
|
3syl |
|- ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) |
71 |
58 67 70
|
3eqtrd |
|- ( ph -> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) |
72 |
71
|
fveq2d |
|- ( ph -> ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) = ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) |
73 |
1 2 3 4 5 6
|
efgsdmi |
|- ( ( A e. dom S /\ ( ( # ` A ) - 1 ) e. NN ) -> ( S ` A ) e. ran ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) |
74 |
8 21 73
|
syl2anc |
|- ( ph -> ( S ` A ) e. ran ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) |
75 |
1 2 3 4
|
efgtlen |
|- ( ( ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) e. W /\ ( S ` A ) e. ran ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) -> ( # ` ( S ` A ) ) = ( ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) + 2 ) ) |
76 |
42 74 75
|
syl2anc |
|- ( ph -> ( # ` ( S ` A ) ) = ( ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) + 2 ) ) |
77 |
49 72 76
|
3brtr4d |
|- ( ph -> ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) ) |
78 |
1 2 3 4
|
efgtf |
|- ( ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) e. W -> ( ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) = ( a e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) , b e. ( I X. 2o ) |-> ( ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) splice <. a , a , <" b ( M ` b ) "> >. ) ) /\ ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) : ( ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) --> W ) ) |
79 |
42 78
|
syl |
|- ( ph -> ( ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) = ( a e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) , b e. ( I X. 2o ) |-> ( ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) splice <. a , a , <" b ( M ` b ) "> >. ) ) /\ ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) : ( ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) --> W ) ) |
80 |
79
|
simprd |
|- ( ph -> ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) : ( ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) --> W ) |
81 |
|
ffn |
|- ( ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) : ( ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) --> W -> ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) Fn ( ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) ) |
82 |
|
ovelrn |
|- ( ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) Fn ( ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) -> ( ( S ` A ) e. ran ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) <-> E. i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) E. r e. ( I X. 2o ) ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) ) ) |
83 |
80 81 82
|
3syl |
|- ( ph -> ( ( S ` A ) e. ran ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) <-> E. i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) E. r e. ( I X. 2o ) ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) ) ) |
84 |
74 83
|
mpbid |
|- ( ph -> E. i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) E. r e. ( I X. 2o ) ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) ) |
85 |
20
|
simprd |
|- ( ph -> ( ( # ` B ) - 1 ) e. NN ) |
86 |
1 2 3 4 5 6
|
efgsdmi |
|- ( ( B e. dom S /\ ( ( # ` B ) - 1 ) e. NN ) -> ( S ` B ) e. ran ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) |
87 |
9 85 86
|
syl2anc |
|- ( ph -> ( S ` B ) e. ran ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) |
88 |
1 2 3 4 5 6
|
efgsdm |
|- ( B e. dom S <-> ( B e. ( Word W \ { (/) } ) /\ ( B ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` B ) ) ( B ` i ) e. ran ( T ` ( B ` ( i - 1 ) ) ) ) ) |
89 |
88
|
simp1bi |
|- ( B e. dom S -> B e. ( Word W \ { (/) } ) ) |
90 |
9 89
|
syl |
|- ( ph -> B e. ( Word W \ { (/) } ) ) |
91 |
90
|
eldifad |
|- ( ph -> B e. Word W ) |
92 |
|
wrdf |
|- ( B e. Word W -> B : ( 0 ..^ ( # ` B ) ) --> W ) |
93 |
91 92
|
syl |
|- ( ph -> B : ( 0 ..^ ( # ` B ) ) --> W ) |
94 |
|
fzo0end |
|- ( ( ( # ` B ) - 1 ) e. NN -> ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) |
95 |
|
elfzofz |
|- ( ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` B ) - 1 ) ) -> ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ... ( ( # ` B ) - 1 ) ) ) |
96 |
85 94 95
|
3syl |
|- ( ph -> ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ... ( ( # ` B ) - 1 ) ) ) |
97 |
|
lencl |
|- ( B e. Word W -> ( # ` B ) e. NN0 ) |
98 |
91 97
|
syl |
|- ( ph -> ( # ` B ) e. NN0 ) |
99 |
98
|
nn0zd |
|- ( ph -> ( # ` B ) e. ZZ ) |
100 |
|
fzoval |
|- ( ( # ` B ) e. ZZ -> ( 0 ..^ ( # ` B ) ) = ( 0 ... ( ( # ` B ) - 1 ) ) ) |
101 |
99 100
|
syl |
|- ( ph -> ( 0 ..^ ( # ` B ) ) = ( 0 ... ( ( # ` B ) - 1 ) ) ) |
102 |
96 101
|
eleqtrrd |
|- ( ph -> ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ..^ ( # ` B ) ) ) |
103 |
93 102
|
ffvelrnd |
|- ( ph -> ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) e. W ) |
104 |
1 2 3 4
|
efgtf |
|- ( ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) e. W -> ( ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) = ( a e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) , b e. ( I X. 2o ) |-> ( ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) splice <. a , a , <" b ( M ` b ) "> >. ) ) /\ ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) : ( ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) --> W ) ) |
105 |
103 104
|
syl |
|- ( ph -> ( ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) = ( a e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) , b e. ( I X. 2o ) |-> ( ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) splice <. a , a , <" b ( M ` b ) "> >. ) ) /\ ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) : ( ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) --> W ) ) |
106 |
105
|
simprd |
|- ( ph -> ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) : ( ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) --> W ) |
107 |
|
ffn |
|- ( ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) : ( ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) --> W -> ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) Fn ( ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) ) |
108 |
|
ovelrn |
|- ( ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) Fn ( ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) X. ( I X. 2o ) ) -> ( ( S ` B ) e. ran ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) <-> E. j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) E. s e. ( I X. 2o ) ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) |
109 |
106 107 108
|
3syl |
|- ( ph -> ( ( S ` B ) e. ran ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) <-> E. j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) E. s e. ( I X. 2o ) ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) |
110 |
87 109
|
mpbid |
|- ( ph -> E. j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) E. s e. ( I X. 2o ) ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) |
111 |
|
reeanv |
|- ( E. i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) E. j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ( E. r e. ( I X. 2o ) ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ E. s e. ( I X. 2o ) ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) <-> ( E. i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) E. r e. ( I X. 2o ) ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ E. j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) E. s e. ( I X. 2o ) ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) |
112 |
|
reeanv |
|- ( E. r e. ( I X. 2o ) E. s e. ( I X. 2o ) ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) <-> ( E. r e. ( I X. 2o ) ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ E. s e. ( I X. 2o ) ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) |
113 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
114 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> A e. dom S ) |
115 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> B e. dom S ) |
116 |
10
|
ad3antrrr |
|- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> ( S ` A ) = ( S ` B ) ) |
117 |
11
|
ad3antrrr |
|- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> -. ( A ` 0 ) = ( B ` 0 ) ) |
118 |
|
eqid |
|- ( ( ( # ` A ) - 1 ) - 1 ) = ( ( ( # ` A ) - 1 ) - 1 ) |
119 |
|
eqid |
|- ( ( ( # ` B ) - 1 ) - 1 ) = ( ( ( # ` B ) - 1 ) - 1 ) |
120 |
|
simpllr |
|- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) |
121 |
120
|
simpld |
|- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) ) |
122 |
120
|
simprd |
|- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) |
123 |
|
simplrl |
|- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) ) |
124 |
123
|
simpld |
|- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> r e. ( I X. 2o ) ) |
125 |
123
|
simprd |
|- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> s e. ( I X. 2o ) ) |
126 |
|
simplrr |
|- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) |
127 |
126
|
simpld |
|- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) ) |
128 |
126
|
simprd |
|- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) |
129 |
|
simpr |
|- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) -> -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) |
130 |
1 2 3 4 5 6 113 114 115 116 117 118 119 121 122 124 125 127 128 129
|
efgredlemb |
|- -. ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) |
131 |
|
iman |
|- ( ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) -> ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) <-> -. ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) /\ -. ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) |
132 |
130 131
|
mpbir |
|- ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) /\ ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) ) ) -> ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) |
133 |
132
|
expr |
|- ( ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) /\ ( r e. ( I X. 2o ) /\ s e. ( I X. 2o ) ) ) -> ( ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) -> ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) |
134 |
133
|
rexlimdvva |
|- ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) -> ( E. r e. ( I X. 2o ) E. s e. ( I X. 2o ) ( ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) -> ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) |
135 |
112 134
|
syl5bir |
|- ( ( ph /\ ( i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) /\ j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ) ) -> ( ( E. r e. ( I X. 2o ) ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ E. s e. ( I X. 2o ) ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) -> ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) |
136 |
135
|
rexlimdvva |
|- ( ph -> ( E. i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) E. j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) ( E. r e. ( I X. 2o ) ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ E. s e. ( I X. 2o ) ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) -> ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) |
137 |
111 136
|
syl5bir |
|- ( ph -> ( ( E. i e. ( 0 ... ( # ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) E. r e. ( I X. 2o ) ( S ` A ) = ( i ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) r ) /\ E. j e. ( 0 ... ( # ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) E. s e. ( I X. 2o ) ( S ` B ) = ( j ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) s ) ) -> ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) |
138 |
84 110 137
|
mp2and |
|- ( ph -> ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) |
139 |
|
fvres |
|- ( ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` B ) - 1 ) ) -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( ( # ` B ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) |
140 |
85 94 139
|
3syl |
|- ( ph -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( ( # ` B ) - 1 ) - 1 ) ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) |
141 |
138 70 140
|
3eqtr4d |
|- ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( ( # ` A ) - 1 ) - 1 ) ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) |
142 |
|
fz1ssfz0 |
|- ( 1 ... ( # ` B ) ) C_ ( 0 ... ( # ` B ) ) |
143 |
98
|
nn0red |
|- ( ph -> ( # ` B ) e. RR ) |
144 |
143
|
lem1d |
|- ( ph -> ( ( # ` B ) - 1 ) <_ ( # ` B ) ) |
145 |
|
fznn |
|- ( ( # ` B ) e. ZZ -> ( ( ( # ` B ) - 1 ) e. ( 1 ... ( # ` B ) ) <-> ( ( ( # ` B ) - 1 ) e. NN /\ ( ( # ` B ) - 1 ) <_ ( # ` B ) ) ) ) |
146 |
99 145
|
syl |
|- ( ph -> ( ( ( # ` B ) - 1 ) e. ( 1 ... ( # ` B ) ) <-> ( ( ( # ` B ) - 1 ) e. NN /\ ( ( # ` B ) - 1 ) <_ ( # ` B ) ) ) ) |
147 |
85 144 146
|
mpbir2and |
|- ( ph -> ( ( # ` B ) - 1 ) e. ( 1 ... ( # ` B ) ) ) |
148 |
142 147
|
sselid |
|- ( ph -> ( ( # ` B ) - 1 ) e. ( 0 ... ( # ` B ) ) ) |
149 |
|
pfxres |
|- ( ( B e. Word W /\ ( ( # ` B ) - 1 ) e. ( 0 ... ( # ` B ) ) ) -> ( B prefix ( ( # ` B ) - 1 ) ) = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) |
150 |
91 148 149
|
syl2anc |
|- ( ph -> ( B prefix ( ( # ` B ) - 1 ) ) = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) |
151 |
150
|
fveq2d |
|- ( ph -> ( # ` ( B prefix ( ( # ` B ) - 1 ) ) ) = ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) |
152 |
|
pfxlen |
|- ( ( B e. Word W /\ ( ( # ` B ) - 1 ) e. ( 0 ... ( # ` B ) ) ) -> ( # ` ( B prefix ( ( # ` B ) - 1 ) ) ) = ( ( # ` B ) - 1 ) ) |
153 |
91 148 152
|
syl2anc |
|- ( ph -> ( # ` ( B prefix ( ( # ` B ) - 1 ) ) ) = ( ( # ` B ) - 1 ) ) |
154 |
151 153
|
eqtr3d |
|- ( ph -> ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( ( # ` B ) - 1 ) ) |
155 |
154
|
fvoveq1d |
|- ( ph -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) - 1 ) ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) |
156 |
141 67 155
|
3eqtr4d |
|- ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) - 1 ) ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) - 1 ) ) ) |
157 |
1 2 3 4 5 6
|
efgsres |
|- ( ( B e. dom S /\ ( ( # ` B ) - 1 ) e. ( 1 ... ( # ` B ) ) ) -> ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) e. dom S ) |
158 |
9 147 157
|
syl2anc |
|- ( ph -> ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) e. dom S ) |
159 |
1 2 3 4 5 6
|
efgsval |
|- ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) e. dom S -> ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) - 1 ) ) ) |
160 |
158 159
|
syl |
|- ( ph -> ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) - 1 ) ) ) |
161 |
156 58 160
|
3eqtr4d |
|- ( ph -> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) |
162 |
|
fveq2 |
|- ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( S ` a ) = ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) |
163 |
162
|
fveq2d |
|- ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( # ` ( S ` a ) ) = ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) ) |
164 |
163
|
breq1d |
|- ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) <-> ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) ) ) |
165 |
162
|
eqeq1d |
|- ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( S ` a ) = ( S ` b ) <-> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) ) ) |
166 |
|
fveq1 |
|- ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( a ` 0 ) = ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) ) |
167 |
166
|
eqeq1d |
|- ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( a ` 0 ) = ( b ` 0 ) <-> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) |
168 |
165 167
|
imbi12d |
|- ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) <-> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) ) |
169 |
164 168
|
imbi12d |
|- ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) ) ) |
170 |
|
fveq2 |
|- ( b = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( S ` b ) = ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) |
171 |
170
|
eqeq2d |
|- ( b = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) <-> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) ) |
172 |
|
fveq1 |
|- ( b = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( b ` 0 ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) ) |
173 |
172
|
eqeq2d |
|- ( b = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) <-> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) ) ) |
174 |
171 173
|
imbi12d |
|- ( b = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) <-> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) ) ) ) |
175 |
174
|
imbi2d |
|- ( b = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( ( ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) ) ) ) ) |
176 |
169 175
|
rspc2va |
|- ( ( ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) e. dom S /\ ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) e. dom S ) /\ A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) -> ( ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) ) ) ) |
177 |
56 158 7 176
|
syl21anc |
|- ( ph -> ( ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) ) ) ) |
178 |
77 161 177
|
mp2d |
|- ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) ) |
179 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ ( ( # ` A ) - 1 ) ) <-> ( ( # ` A ) - 1 ) e. NN ) |
180 |
21 179
|
sylibr |
|- ( ph -> 0 e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) |
181 |
180
|
fvresd |
|- ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( A ` 0 ) ) |
182 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ ( ( # ` B ) - 1 ) ) <-> ( ( # ` B ) - 1 ) e. NN ) |
183 |
85 182
|
sylibr |
|- ( ph -> 0 e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) |
184 |
183
|
fvresd |
|- ( ph -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( B ` 0 ) ) |
185 |
178 181 184
|
3eqtr3d |
|- ( ph -> ( A ` 0 ) = ( B ` 0 ) ) |
186 |
185 11
|
pm2.65i |
|- -. ph |