Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
|- W = ( _I ` Word ( I X. 2o ) ) |
2 |
|
efgval.r |
|- .~ = ( ~FG ` I ) |
3 |
|
efgval2.m |
|- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
4 |
|
efgval2.t |
|- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
5 |
|
efgred.d |
|- D = ( W \ U_ x e. W ran ( T ` x ) ) |
6 |
|
efgred.s |
|- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
7 |
|
efgredlem.1 |
|- ( ph -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
8 |
|
efgredlem.2 |
|- ( ph -> A e. dom S ) |
9 |
|
efgredlem.3 |
|- ( ph -> B e. dom S ) |
10 |
|
efgredlem.4 |
|- ( ph -> ( S ` A ) = ( S ` B ) ) |
11 |
|
efgredlem.5 |
|- ( ph -> -. ( A ` 0 ) = ( B ` 0 ) ) |
12 |
|
efgredlemb.k |
|- K = ( ( ( # ` A ) - 1 ) - 1 ) |
13 |
|
efgredlemb.l |
|- L = ( ( ( # ` B ) - 1 ) - 1 ) |
14 |
|
efgredlemb.p |
|- ( ph -> P e. ( 0 ... ( # ` ( A ` K ) ) ) ) |
15 |
|
efgredlemb.q |
|- ( ph -> Q e. ( 0 ... ( # ` ( B ` L ) ) ) ) |
16 |
|
efgredlemb.u |
|- ( ph -> U e. ( I X. 2o ) ) |
17 |
|
efgredlemb.v |
|- ( ph -> V e. ( I X. 2o ) ) |
18 |
|
efgredlemb.6 |
|- ( ph -> ( S ` A ) = ( P ( T ` ( A ` K ) ) U ) ) |
19 |
|
efgredlemb.7 |
|- ( ph -> ( S ` B ) = ( Q ( T ` ( B ` L ) ) V ) ) |
20 |
|
efgredlemb.8 |
|- ( ph -> -. ( A ` K ) = ( B ` L ) ) |
21 |
|
fveq2 |
|- ( ( S ` A ) = ( S ` B ) -> ( # ` ( S ` A ) ) = ( # ` ( S ` B ) ) ) |
22 |
21
|
breq2d |
|- ( ( S ` A ) = ( S ` B ) -> ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) <-> ( # ` ( S ` a ) ) < ( # ` ( S ` B ) ) ) ) |
23 |
22
|
imbi1d |
|- ( ( S ` A ) = ( S ` B ) -> ( ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` a ) ) < ( # ` ( S ` B ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
24 |
23
|
2ralbidv |
|- ( ( S ` A ) = ( S ` B ) -> ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` B ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
25 |
10 24
|
syl |
|- ( ph -> ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` B ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
26 |
7 25
|
mpbid |
|- ( ph -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` B ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
27 |
10
|
eqcomd |
|- ( ph -> ( S ` B ) = ( S ` A ) ) |
28 |
|
eqcom |
|- ( ( A ` 0 ) = ( B ` 0 ) <-> ( B ` 0 ) = ( A ` 0 ) ) |
29 |
11 28
|
sylnib |
|- ( ph -> -. ( B ` 0 ) = ( A ` 0 ) ) |
30 |
|
eqcom |
|- ( ( A ` K ) = ( B ` L ) <-> ( B ` L ) = ( A ` K ) ) |
31 |
20 30
|
sylnib |
|- ( ph -> -. ( B ` L ) = ( A ` K ) ) |
32 |
1 2 3 4 5 6 26 9 8 27 29 13 12 15 14 17 16 19 18 31
|
efgredlemc |
|- ( ph -> ( Q e. ( ZZ>= ` P ) -> ( B ` 0 ) = ( A ` 0 ) ) ) |
33 |
32 28
|
syl6ibr |
|- ( ph -> ( Q e. ( ZZ>= ` P ) -> ( A ` 0 ) = ( B ` 0 ) ) ) |
34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
|
efgredlemc |
|- ( ph -> ( P e. ( ZZ>= ` Q ) -> ( A ` 0 ) = ( B ` 0 ) ) ) |
35 |
14
|
elfzelzd |
|- ( ph -> P e. ZZ ) |
36 |
15
|
elfzelzd |
|- ( ph -> Q e. ZZ ) |
37 |
|
uztric |
|- ( ( P e. ZZ /\ Q e. ZZ ) -> ( Q e. ( ZZ>= ` P ) \/ P e. ( ZZ>= ` Q ) ) ) |
38 |
35 36 37
|
syl2anc |
|- ( ph -> ( Q e. ( ZZ>= ` P ) \/ P e. ( ZZ>= ` Q ) ) ) |
39 |
33 34 38
|
mpjaod |
|- ( ph -> ( A ` 0 ) = ( B ` 0 ) ) |
40 |
39 11
|
pm2.65i |
|- -. ph |