| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efgval.w |
|- W = ( _I ` Word ( I X. 2o ) ) |
| 2 |
|
efgval.r |
|- .~ = ( ~FG ` I ) |
| 3 |
|
efgval2.m |
|- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
| 4 |
|
efgval2.t |
|- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
| 5 |
|
efgred.d |
|- D = ( W \ U_ x e. W ran ( T ` x ) ) |
| 6 |
|
efgred.s |
|- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
| 7 |
|
efgredlem.1 |
|- ( ph -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
| 8 |
|
efgredlem.2 |
|- ( ph -> A e. dom S ) |
| 9 |
|
efgredlem.3 |
|- ( ph -> B e. dom S ) |
| 10 |
|
efgredlem.4 |
|- ( ph -> ( S ` A ) = ( S ` B ) ) |
| 11 |
|
efgredlem.5 |
|- ( ph -> -. ( A ` 0 ) = ( B ` 0 ) ) |
| 12 |
|
efgredlemb.k |
|- K = ( ( ( # ` A ) - 1 ) - 1 ) |
| 13 |
|
efgredlemb.l |
|- L = ( ( ( # ` B ) - 1 ) - 1 ) |
| 14 |
|
efgredlemb.p |
|- ( ph -> P e. ( 0 ... ( # ` ( A ` K ) ) ) ) |
| 15 |
|
efgredlemb.q |
|- ( ph -> Q e. ( 0 ... ( # ` ( B ` L ) ) ) ) |
| 16 |
|
efgredlemb.u |
|- ( ph -> U e. ( I X. 2o ) ) |
| 17 |
|
efgredlemb.v |
|- ( ph -> V e. ( I X. 2o ) ) |
| 18 |
|
efgredlemb.6 |
|- ( ph -> ( S ` A ) = ( P ( T ` ( A ` K ) ) U ) ) |
| 19 |
|
efgredlemb.7 |
|- ( ph -> ( S ` B ) = ( Q ( T ` ( B ` L ) ) V ) ) |
| 20 |
|
efgredlemb.8 |
|- ( ph -> -. ( A ` K ) = ( B ` L ) ) |
| 21 |
|
efgredlemd.9 |
|- ( ph -> P e. ( ZZ>= ` ( Q + 2 ) ) ) |
| 22 |
|
efgredlemd.c |
|- ( ph -> C e. dom S ) |
| 23 |
|
efgredlemd.sc |
|- ( ph -> ( S ` C ) = ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) ) |
| 24 |
1 2 3 4 5 6
|
efgsdm |
|- ( C e. dom S <-> ( C e. ( Word W \ { (/) } ) /\ ( C ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` C ) ) ( C ` i ) e. ran ( T ` ( C ` ( i - 1 ) ) ) ) ) |
| 25 |
24
|
simp1bi |
|- ( C e. dom S -> C e. ( Word W \ { (/) } ) ) |
| 26 |
22 25
|
syl |
|- ( ph -> C e. ( Word W \ { (/) } ) ) |
| 27 |
26
|
eldifad |
|- ( ph -> C e. Word W ) |
| 28 |
1 2 3 4 5 6
|
efgsdm |
|- ( A e. dom S <-> ( A e. ( Word W \ { (/) } ) /\ ( A ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` A ) ) ( A ` i ) e. ran ( T ` ( A ` ( i - 1 ) ) ) ) ) |
| 29 |
28
|
simp1bi |
|- ( A e. dom S -> A e. ( Word W \ { (/) } ) ) |
| 30 |
8 29
|
syl |
|- ( ph -> A e. ( Word W \ { (/) } ) ) |
| 31 |
30
|
eldifad |
|- ( ph -> A e. Word W ) |
| 32 |
|
wrdf |
|- ( A e. Word W -> A : ( 0 ..^ ( # ` A ) ) --> W ) |
| 33 |
31 32
|
syl |
|- ( ph -> A : ( 0 ..^ ( # ` A ) ) --> W ) |
| 34 |
|
fzossfz |
|- ( 0 ..^ ( ( # ` A ) - 1 ) ) C_ ( 0 ... ( ( # ` A ) - 1 ) ) |
| 35 |
|
lencl |
|- ( A e. Word W -> ( # ` A ) e. NN0 ) |
| 36 |
31 35
|
syl |
|- ( ph -> ( # ` A ) e. NN0 ) |
| 37 |
36
|
nn0zd |
|- ( ph -> ( # ` A ) e. ZZ ) |
| 38 |
|
fzoval |
|- ( ( # ` A ) e. ZZ -> ( 0 ..^ ( # ` A ) ) = ( 0 ... ( ( # ` A ) - 1 ) ) ) |
| 39 |
37 38
|
syl |
|- ( ph -> ( 0 ..^ ( # ` A ) ) = ( 0 ... ( ( # ` A ) - 1 ) ) ) |
| 40 |
34 39
|
sseqtrrid |
|- ( ph -> ( 0 ..^ ( ( # ` A ) - 1 ) ) C_ ( 0 ..^ ( # ` A ) ) ) |
| 41 |
1 2 3 4 5 6 7 8 9 10 11
|
efgredlema |
|- ( ph -> ( ( ( # ` A ) - 1 ) e. NN /\ ( ( # ` B ) - 1 ) e. NN ) ) |
| 42 |
41
|
simpld |
|- ( ph -> ( ( # ` A ) - 1 ) e. NN ) |
| 43 |
|
fzo0end |
|- ( ( ( # ` A ) - 1 ) e. NN -> ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) |
| 44 |
42 43
|
syl |
|- ( ph -> ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) |
| 45 |
12 44
|
eqeltrid |
|- ( ph -> K e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) |
| 46 |
40 45
|
sseldd |
|- ( ph -> K e. ( 0 ..^ ( # ` A ) ) ) |
| 47 |
33 46
|
ffvelcdmd |
|- ( ph -> ( A ` K ) e. W ) |
| 48 |
47
|
s1cld |
|- ( ph -> <" ( A ` K ) "> e. Word W ) |
| 49 |
|
eldifsn |
|- ( C e. ( Word W \ { (/) } ) <-> ( C e. Word W /\ C =/= (/) ) ) |
| 50 |
|
lennncl |
|- ( ( C e. Word W /\ C =/= (/) ) -> ( # ` C ) e. NN ) |
| 51 |
49 50
|
sylbi |
|- ( C e. ( Word W \ { (/) } ) -> ( # ` C ) e. NN ) |
| 52 |
26 51
|
syl |
|- ( ph -> ( # ` C ) e. NN ) |
| 53 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ ( # ` C ) ) <-> ( # ` C ) e. NN ) |
| 54 |
52 53
|
sylibr |
|- ( ph -> 0 e. ( 0 ..^ ( # ` C ) ) ) |
| 55 |
|
ccatval1 |
|- ( ( C e. Word W /\ <" ( A ` K ) "> e. Word W /\ 0 e. ( 0 ..^ ( # ` C ) ) ) -> ( ( C ++ <" ( A ` K ) "> ) ` 0 ) = ( C ` 0 ) ) |
| 56 |
27 48 54 55
|
syl3anc |
|- ( ph -> ( ( C ++ <" ( A ` K ) "> ) ` 0 ) = ( C ` 0 ) ) |
| 57 |
1 2 3 4 5 6
|
efgsdm |
|- ( B e. dom S <-> ( B e. ( Word W \ { (/) } ) /\ ( B ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` B ) ) ( B ` i ) e. ran ( T ` ( B ` ( i - 1 ) ) ) ) ) |
| 58 |
57
|
simp1bi |
|- ( B e. dom S -> B e. ( Word W \ { (/) } ) ) |
| 59 |
9 58
|
syl |
|- ( ph -> B e. ( Word W \ { (/) } ) ) |
| 60 |
59
|
eldifad |
|- ( ph -> B e. Word W ) |
| 61 |
|
wrdf |
|- ( B e. Word W -> B : ( 0 ..^ ( # ` B ) ) --> W ) |
| 62 |
60 61
|
syl |
|- ( ph -> B : ( 0 ..^ ( # ` B ) ) --> W ) |
| 63 |
|
fzossfz |
|- ( 0 ..^ ( ( # ` B ) - 1 ) ) C_ ( 0 ... ( ( # ` B ) - 1 ) ) |
| 64 |
|
lencl |
|- ( B e. Word W -> ( # ` B ) e. NN0 ) |
| 65 |
60 64
|
syl |
|- ( ph -> ( # ` B ) e. NN0 ) |
| 66 |
65
|
nn0zd |
|- ( ph -> ( # ` B ) e. ZZ ) |
| 67 |
|
fzoval |
|- ( ( # ` B ) e. ZZ -> ( 0 ..^ ( # ` B ) ) = ( 0 ... ( ( # ` B ) - 1 ) ) ) |
| 68 |
66 67
|
syl |
|- ( ph -> ( 0 ..^ ( # ` B ) ) = ( 0 ... ( ( # ` B ) - 1 ) ) ) |
| 69 |
63 68
|
sseqtrrid |
|- ( ph -> ( 0 ..^ ( ( # ` B ) - 1 ) ) C_ ( 0 ..^ ( # ` B ) ) ) |
| 70 |
41
|
simprd |
|- ( ph -> ( ( # ` B ) - 1 ) e. NN ) |
| 71 |
|
fzo0end |
|- ( ( ( # ` B ) - 1 ) e. NN -> ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) |
| 72 |
70 71
|
syl |
|- ( ph -> ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) |
| 73 |
13 72
|
eqeltrid |
|- ( ph -> L e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) |
| 74 |
69 73
|
sseldd |
|- ( ph -> L e. ( 0 ..^ ( # ` B ) ) ) |
| 75 |
62 74
|
ffvelcdmd |
|- ( ph -> ( B ` L ) e. W ) |
| 76 |
75
|
s1cld |
|- ( ph -> <" ( B ` L ) "> e. Word W ) |
| 77 |
|
ccatval1 |
|- ( ( C e. Word W /\ <" ( B ` L ) "> e. Word W /\ 0 e. ( 0 ..^ ( # ` C ) ) ) -> ( ( C ++ <" ( B ` L ) "> ) ` 0 ) = ( C ` 0 ) ) |
| 78 |
27 76 54 77
|
syl3anc |
|- ( ph -> ( ( C ++ <" ( B ` L ) "> ) ` 0 ) = ( C ` 0 ) ) |
| 79 |
56 78
|
eqtr4d |
|- ( ph -> ( ( C ++ <" ( A ` K ) "> ) ` 0 ) = ( ( C ++ <" ( B ` L ) "> ) ` 0 ) ) |
| 80 |
|
fviss |
|- ( _I ` Word ( I X. 2o ) ) C_ Word ( I X. 2o ) |
| 81 |
1 80
|
eqsstri |
|- W C_ Word ( I X. 2o ) |
| 82 |
81 47
|
sselid |
|- ( ph -> ( A ` K ) e. Word ( I X. 2o ) ) |
| 83 |
|
lencl |
|- ( ( A ` K ) e. Word ( I X. 2o ) -> ( # ` ( A ` K ) ) e. NN0 ) |
| 84 |
82 83
|
syl |
|- ( ph -> ( # ` ( A ` K ) ) e. NN0 ) |
| 85 |
84
|
nn0red |
|- ( ph -> ( # ` ( A ` K ) ) e. RR ) |
| 86 |
|
2rp |
|- 2 e. RR+ |
| 87 |
|
ltaddrp |
|- ( ( ( # ` ( A ` K ) ) e. RR /\ 2 e. RR+ ) -> ( # ` ( A ` K ) ) < ( ( # ` ( A ` K ) ) + 2 ) ) |
| 88 |
85 86 87
|
sylancl |
|- ( ph -> ( # ` ( A ` K ) ) < ( ( # ` ( A ` K ) ) + 2 ) ) |
| 89 |
36
|
nn0red |
|- ( ph -> ( # ` A ) e. RR ) |
| 90 |
89
|
lem1d |
|- ( ph -> ( ( # ` A ) - 1 ) <_ ( # ` A ) ) |
| 91 |
|
fznn |
|- ( ( # ` A ) e. ZZ -> ( ( ( # ` A ) - 1 ) e. ( 1 ... ( # ` A ) ) <-> ( ( ( # ` A ) - 1 ) e. NN /\ ( ( # ` A ) - 1 ) <_ ( # ` A ) ) ) ) |
| 92 |
37 91
|
syl |
|- ( ph -> ( ( ( # ` A ) - 1 ) e. ( 1 ... ( # ` A ) ) <-> ( ( ( # ` A ) - 1 ) e. NN /\ ( ( # ` A ) - 1 ) <_ ( # ` A ) ) ) ) |
| 93 |
42 90 92
|
mpbir2and |
|- ( ph -> ( ( # ` A ) - 1 ) e. ( 1 ... ( # ` A ) ) ) |
| 94 |
1 2 3 4 5 6
|
efgsres |
|- ( ( A e. dom S /\ ( ( # ` A ) - 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) e. dom S ) |
| 95 |
8 93 94
|
syl2anc |
|- ( ph -> ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) e. dom S ) |
| 96 |
1 2 3 4 5 6
|
efgsval |
|- ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) e. dom S -> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) - 1 ) ) ) |
| 97 |
95 96
|
syl |
|- ( ph -> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) - 1 ) ) ) |
| 98 |
|
fz1ssfz0 |
|- ( 1 ... ( # ` A ) ) C_ ( 0 ... ( # ` A ) ) |
| 99 |
98 93
|
sselid |
|- ( ph -> ( ( # ` A ) - 1 ) e. ( 0 ... ( # ` A ) ) ) |
| 100 |
|
pfxres |
|- ( ( A e. Word W /\ ( ( # ` A ) - 1 ) e. ( 0 ... ( # ` A ) ) ) -> ( A prefix ( ( # ` A ) - 1 ) ) = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) |
| 101 |
31 99 100
|
syl2anc |
|- ( ph -> ( A prefix ( ( # ` A ) - 1 ) ) = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) |
| 102 |
101
|
fveq2d |
|- ( ph -> ( # ` ( A prefix ( ( # ` A ) - 1 ) ) ) = ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) |
| 103 |
|
pfxlen |
|- ( ( A e. Word W /\ ( ( # ` A ) - 1 ) e. ( 0 ... ( # ` A ) ) ) -> ( # ` ( A prefix ( ( # ` A ) - 1 ) ) ) = ( ( # ` A ) - 1 ) ) |
| 104 |
31 99 103
|
syl2anc |
|- ( ph -> ( # ` ( A prefix ( ( # ` A ) - 1 ) ) ) = ( ( # ` A ) - 1 ) ) |
| 105 |
102 104
|
eqtr3d |
|- ( ph -> ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( ( # ` A ) - 1 ) ) |
| 106 |
105
|
oveq1d |
|- ( ph -> ( ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) - 1 ) = ( ( ( # ` A ) - 1 ) - 1 ) ) |
| 107 |
106 12
|
eqtr4di |
|- ( ph -> ( ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) - 1 ) = K ) |
| 108 |
107
|
fveq2d |
|- ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) - 1 ) ) = ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` K ) ) |
| 109 |
45
|
fvresd |
|- ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` K ) = ( A ` K ) ) |
| 110 |
97 108 109
|
3eqtrd |
|- ( ph -> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( A ` K ) ) |
| 111 |
110
|
fveq2d |
|- ( ph -> ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) = ( # ` ( A ` K ) ) ) |
| 112 |
1 2 3 4 5 6
|
efgsdmi |
|- ( ( A e. dom S /\ ( ( # ` A ) - 1 ) e. NN ) -> ( S ` A ) e. ran ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) |
| 113 |
8 42 112
|
syl2anc |
|- ( ph -> ( S ` A ) e. ran ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) |
| 114 |
12
|
fveq2i |
|- ( A ` K ) = ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) |
| 115 |
114
|
fveq2i |
|- ( T ` ( A ` K ) ) = ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) |
| 116 |
115
|
rneqi |
|- ran ( T ` ( A ` K ) ) = ran ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) |
| 117 |
113 116
|
eleqtrrdi |
|- ( ph -> ( S ` A ) e. ran ( T ` ( A ` K ) ) ) |
| 118 |
1 2 3 4
|
efgtlen |
|- ( ( ( A ` K ) e. W /\ ( S ` A ) e. ran ( T ` ( A ` K ) ) ) -> ( # ` ( S ` A ) ) = ( ( # ` ( A ` K ) ) + 2 ) ) |
| 119 |
47 117 118
|
syl2anc |
|- ( ph -> ( # ` ( S ` A ) ) = ( ( # ` ( A ` K ) ) + 2 ) ) |
| 120 |
88 111 119
|
3brtr4d |
|- ( ph -> ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) ) |
| 121 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
|
efgredleme |
|- ( ph -> ( ( A ` K ) e. ran ( T ` ( S ` C ) ) /\ ( B ` L ) e. ran ( T ` ( S ` C ) ) ) ) |
| 122 |
121
|
simpld |
|- ( ph -> ( A ` K ) e. ran ( T ` ( S ` C ) ) ) |
| 123 |
1 2 3 4 5 6
|
efgsp1 |
|- ( ( C e. dom S /\ ( A ` K ) e. ran ( T ` ( S ` C ) ) ) -> ( C ++ <" ( A ` K ) "> ) e. dom S ) |
| 124 |
22 122 123
|
syl2anc |
|- ( ph -> ( C ++ <" ( A ` K ) "> ) e. dom S ) |
| 125 |
1 2 3 4 5 6
|
efgsval2 |
|- ( ( C e. Word W /\ ( A ` K ) e. W /\ ( C ++ <" ( A ` K ) "> ) e. dom S ) -> ( S ` ( C ++ <" ( A ` K ) "> ) ) = ( A ` K ) ) |
| 126 |
27 47 124 125
|
syl3anc |
|- ( ph -> ( S ` ( C ++ <" ( A ` K ) "> ) ) = ( A ` K ) ) |
| 127 |
110 126
|
eqtr4d |
|- ( ph -> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( A ` K ) "> ) ) ) |
| 128 |
|
2fveq3 |
|- ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( # ` ( S ` a ) ) = ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) ) |
| 129 |
128
|
breq1d |
|- ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) <-> ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) ) ) |
| 130 |
|
fveqeq2 |
|- ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( S ` a ) = ( S ` b ) <-> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) ) ) |
| 131 |
|
fveq1 |
|- ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( a ` 0 ) = ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) ) |
| 132 |
131
|
eqeq1d |
|- ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( a ` 0 ) = ( b ` 0 ) <-> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) |
| 133 |
130 132
|
imbi12d |
|- ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) <-> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) ) |
| 134 |
129 133
|
imbi12d |
|- ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) ) ) |
| 135 |
|
fveq2 |
|- ( b = ( C ++ <" ( A ` K ) "> ) -> ( S ` b ) = ( S ` ( C ++ <" ( A ` K ) "> ) ) ) |
| 136 |
135
|
eqeq2d |
|- ( b = ( C ++ <" ( A ` K ) "> ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) <-> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( A ` K ) "> ) ) ) ) |
| 137 |
|
fveq1 |
|- ( b = ( C ++ <" ( A ` K ) "> ) -> ( b ` 0 ) = ( ( C ++ <" ( A ` K ) "> ) ` 0 ) ) |
| 138 |
137
|
eqeq2d |
|- ( b = ( C ++ <" ( A ` K ) "> ) -> ( ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) <-> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( A ` K ) "> ) ` 0 ) ) ) |
| 139 |
136 138
|
imbi12d |
|- ( b = ( C ++ <" ( A ` K ) "> ) -> ( ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) <-> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( A ` K ) "> ) ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( A ` K ) "> ) ` 0 ) ) ) ) |
| 140 |
139
|
imbi2d |
|- ( b = ( C ++ <" ( A ` K ) "> ) -> ( ( ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( A ` K ) "> ) ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( A ` K ) "> ) ` 0 ) ) ) ) ) |
| 141 |
134 140
|
rspc2va |
|- ( ( ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) e. dom S /\ ( C ++ <" ( A ` K ) "> ) e. dom S ) /\ A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) -> ( ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( A ` K ) "> ) ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( A ` K ) "> ) ` 0 ) ) ) ) |
| 142 |
95 124 7 141
|
syl21anc |
|- ( ph -> ( ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( A ` K ) "> ) ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( A ` K ) "> ) ` 0 ) ) ) ) |
| 143 |
120 127 142
|
mp2d |
|- ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( A ` K ) "> ) ` 0 ) ) |
| 144 |
81 75
|
sselid |
|- ( ph -> ( B ` L ) e. Word ( I X. 2o ) ) |
| 145 |
|
lencl |
|- ( ( B ` L ) e. Word ( I X. 2o ) -> ( # ` ( B ` L ) ) e. NN0 ) |
| 146 |
144 145
|
syl |
|- ( ph -> ( # ` ( B ` L ) ) e. NN0 ) |
| 147 |
146
|
nn0red |
|- ( ph -> ( # ` ( B ` L ) ) e. RR ) |
| 148 |
|
ltaddrp |
|- ( ( ( # ` ( B ` L ) ) e. RR /\ 2 e. RR+ ) -> ( # ` ( B ` L ) ) < ( ( # ` ( B ` L ) ) + 2 ) ) |
| 149 |
147 86 148
|
sylancl |
|- ( ph -> ( # ` ( B ` L ) ) < ( ( # ` ( B ` L ) ) + 2 ) ) |
| 150 |
65
|
nn0red |
|- ( ph -> ( # ` B ) e. RR ) |
| 151 |
150
|
lem1d |
|- ( ph -> ( ( # ` B ) - 1 ) <_ ( # ` B ) ) |
| 152 |
|
fznn |
|- ( ( # ` B ) e. ZZ -> ( ( ( # ` B ) - 1 ) e. ( 1 ... ( # ` B ) ) <-> ( ( ( # ` B ) - 1 ) e. NN /\ ( ( # ` B ) - 1 ) <_ ( # ` B ) ) ) ) |
| 153 |
66 152
|
syl |
|- ( ph -> ( ( ( # ` B ) - 1 ) e. ( 1 ... ( # ` B ) ) <-> ( ( ( # ` B ) - 1 ) e. NN /\ ( ( # ` B ) - 1 ) <_ ( # ` B ) ) ) ) |
| 154 |
70 151 153
|
mpbir2and |
|- ( ph -> ( ( # ` B ) - 1 ) e. ( 1 ... ( # ` B ) ) ) |
| 155 |
1 2 3 4 5 6
|
efgsres |
|- ( ( B e. dom S /\ ( ( # ` B ) - 1 ) e. ( 1 ... ( # ` B ) ) ) -> ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) e. dom S ) |
| 156 |
9 154 155
|
syl2anc |
|- ( ph -> ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) e. dom S ) |
| 157 |
1 2 3 4 5 6
|
efgsval |
|- ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) e. dom S -> ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) - 1 ) ) ) |
| 158 |
156 157
|
syl |
|- ( ph -> ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) - 1 ) ) ) |
| 159 |
|
fz1ssfz0 |
|- ( 1 ... ( # ` B ) ) C_ ( 0 ... ( # ` B ) ) |
| 160 |
159 154
|
sselid |
|- ( ph -> ( ( # ` B ) - 1 ) e. ( 0 ... ( # ` B ) ) ) |
| 161 |
|
pfxres |
|- ( ( B e. Word W /\ ( ( # ` B ) - 1 ) e. ( 0 ... ( # ` B ) ) ) -> ( B prefix ( ( # ` B ) - 1 ) ) = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) |
| 162 |
60 160 161
|
syl2anc |
|- ( ph -> ( B prefix ( ( # ` B ) - 1 ) ) = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) |
| 163 |
162
|
fveq2d |
|- ( ph -> ( # ` ( B prefix ( ( # ` B ) - 1 ) ) ) = ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) |
| 164 |
|
pfxlen |
|- ( ( B e. Word W /\ ( ( # ` B ) - 1 ) e. ( 0 ... ( # ` B ) ) ) -> ( # ` ( B prefix ( ( # ` B ) - 1 ) ) ) = ( ( # ` B ) - 1 ) ) |
| 165 |
60 160 164
|
syl2anc |
|- ( ph -> ( # ` ( B prefix ( ( # ` B ) - 1 ) ) ) = ( ( # ` B ) - 1 ) ) |
| 166 |
163 165
|
eqtr3d |
|- ( ph -> ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( ( # ` B ) - 1 ) ) |
| 167 |
166
|
oveq1d |
|- ( ph -> ( ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) - 1 ) = ( ( ( # ` B ) - 1 ) - 1 ) ) |
| 168 |
167 13
|
eqtr4di |
|- ( ph -> ( ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) - 1 ) = L ) |
| 169 |
168
|
fveq2d |
|- ( ph -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) - 1 ) ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` L ) ) |
| 170 |
73
|
fvresd |
|- ( ph -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` L ) = ( B ` L ) ) |
| 171 |
158 169 170
|
3eqtrd |
|- ( ph -> ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( B ` L ) ) |
| 172 |
171
|
fveq2d |
|- ( ph -> ( # ` ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) = ( # ` ( B ` L ) ) ) |
| 173 |
1 2 3 4 5 6
|
efgsdmi |
|- ( ( B e. dom S /\ ( ( # ` B ) - 1 ) e. NN ) -> ( S ` B ) e. ran ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) |
| 174 |
9 70 173
|
syl2anc |
|- ( ph -> ( S ` B ) e. ran ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) |
| 175 |
10 174
|
eqeltrd |
|- ( ph -> ( S ` A ) e. ran ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) |
| 176 |
13
|
fveq2i |
|- ( B ` L ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) |
| 177 |
176
|
fveq2i |
|- ( T ` ( B ` L ) ) = ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) |
| 178 |
177
|
rneqi |
|- ran ( T ` ( B ` L ) ) = ran ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) |
| 179 |
175 178
|
eleqtrrdi |
|- ( ph -> ( S ` A ) e. ran ( T ` ( B ` L ) ) ) |
| 180 |
1 2 3 4
|
efgtlen |
|- ( ( ( B ` L ) e. W /\ ( S ` A ) e. ran ( T ` ( B ` L ) ) ) -> ( # ` ( S ` A ) ) = ( ( # ` ( B ` L ) ) + 2 ) ) |
| 181 |
75 179 180
|
syl2anc |
|- ( ph -> ( # ` ( S ` A ) ) = ( ( # ` ( B ` L ) ) + 2 ) ) |
| 182 |
149 172 181
|
3brtr4d |
|- ( ph -> ( # ` ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) ) |
| 183 |
121
|
simprd |
|- ( ph -> ( B ` L ) e. ran ( T ` ( S ` C ) ) ) |
| 184 |
1 2 3 4 5 6
|
efgsp1 |
|- ( ( C e. dom S /\ ( B ` L ) e. ran ( T ` ( S ` C ) ) ) -> ( C ++ <" ( B ` L ) "> ) e. dom S ) |
| 185 |
22 183 184
|
syl2anc |
|- ( ph -> ( C ++ <" ( B ` L ) "> ) e. dom S ) |
| 186 |
1 2 3 4 5 6
|
efgsval2 |
|- ( ( C e. Word W /\ ( B ` L ) e. W /\ ( C ++ <" ( B ` L ) "> ) e. dom S ) -> ( S ` ( C ++ <" ( B ` L ) "> ) ) = ( B ` L ) ) |
| 187 |
27 75 185 186
|
syl3anc |
|- ( ph -> ( S ` ( C ++ <" ( B ` L ) "> ) ) = ( B ` L ) ) |
| 188 |
171 187
|
eqtr4d |
|- ( ph -> ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( B ` L ) "> ) ) ) |
| 189 |
|
2fveq3 |
|- ( a = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( # ` ( S ` a ) ) = ( # ` ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) ) |
| 190 |
189
|
breq1d |
|- ( a = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) <-> ( # ` ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) ) ) |
| 191 |
|
fveqeq2 |
|- ( a = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( ( S ` a ) = ( S ` b ) <-> ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` b ) ) ) |
| 192 |
|
fveq1 |
|- ( a = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( a ` 0 ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) ) |
| 193 |
192
|
eqeq1d |
|- ( a = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( ( a ` 0 ) = ( b ` 0 ) <-> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) |
| 194 |
191 193
|
imbi12d |
|- ( a = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) <-> ( ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` b ) -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) ) |
| 195 |
190 194
|
imbi12d |
|- ( a = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` b ) -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) ) ) |
| 196 |
|
fveq2 |
|- ( b = ( C ++ <" ( B ` L ) "> ) -> ( S ` b ) = ( S ` ( C ++ <" ( B ` L ) "> ) ) ) |
| 197 |
196
|
eqeq2d |
|- ( b = ( C ++ <" ( B ` L ) "> ) -> ( ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` b ) <-> ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( B ` L ) "> ) ) ) ) |
| 198 |
|
fveq1 |
|- ( b = ( C ++ <" ( B ` L ) "> ) -> ( b ` 0 ) = ( ( C ++ <" ( B ` L ) "> ) ` 0 ) ) |
| 199 |
198
|
eqeq2d |
|- ( b = ( C ++ <" ( B ` L ) "> ) -> ( ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) <-> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( B ` L ) "> ) ` 0 ) ) ) |
| 200 |
197 199
|
imbi12d |
|- ( b = ( C ++ <" ( B ` L ) "> ) -> ( ( ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` b ) -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) <-> ( ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( B ` L ) "> ) ) -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( B ` L ) "> ) ` 0 ) ) ) ) |
| 201 |
200
|
imbi2d |
|- ( b = ( C ++ <" ( B ` L ) "> ) -> ( ( ( # ` ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` b ) -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( B ` L ) "> ) ) -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( B ` L ) "> ) ` 0 ) ) ) ) ) |
| 202 |
195 201
|
rspc2va |
|- ( ( ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) e. dom S /\ ( C ++ <" ( B ` L ) "> ) e. dom S ) /\ A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) -> ( ( # ` ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( B ` L ) "> ) ) -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( B ` L ) "> ) ` 0 ) ) ) ) |
| 203 |
156 185 7 202
|
syl21anc |
|- ( ph -> ( ( # ` ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( B ` L ) "> ) ) -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( B ` L ) "> ) ` 0 ) ) ) ) |
| 204 |
182 188 203
|
mp2d |
|- ( ph -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( B ` L ) "> ) ` 0 ) ) |
| 205 |
79 143 204
|
3eqtr4d |
|- ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) ) |
| 206 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ ( ( # ` A ) - 1 ) ) <-> ( ( # ` A ) - 1 ) e. NN ) |
| 207 |
42 206
|
sylibr |
|- ( ph -> 0 e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) |
| 208 |
207
|
fvresd |
|- ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( A ` 0 ) ) |
| 209 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ ( ( # ` B ) - 1 ) ) <-> ( ( # ` B ) - 1 ) e. NN ) |
| 210 |
70 209
|
sylibr |
|- ( ph -> 0 e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) |
| 211 |
210
|
fvresd |
|- ( ph -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( B ` 0 ) ) |
| 212 |
205 208 211
|
3eqtr3d |
|- ( ph -> ( A ` 0 ) = ( B ` 0 ) ) |