Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
|- W = ( _I ` Word ( I X. 2o ) ) |
2 |
|
efgval.r |
|- .~ = ( ~FG ` I ) |
3 |
|
efgval2.m |
|- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
4 |
|
efgval2.t |
|- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
5 |
|
efgred.d |
|- D = ( W \ U_ x e. W ran ( T ` x ) ) |
6 |
|
efgred.s |
|- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
7 |
|
efgredlem.1 |
|- ( ph -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
8 |
|
efgredlem.2 |
|- ( ph -> A e. dom S ) |
9 |
|
efgredlem.3 |
|- ( ph -> B e. dom S ) |
10 |
|
efgredlem.4 |
|- ( ph -> ( S ` A ) = ( S ` B ) ) |
11 |
|
efgredlem.5 |
|- ( ph -> -. ( A ` 0 ) = ( B ` 0 ) ) |
12 |
|
efgredlemb.k |
|- K = ( ( ( # ` A ) - 1 ) - 1 ) |
13 |
|
efgredlemb.l |
|- L = ( ( ( # ` B ) - 1 ) - 1 ) |
14 |
1 2 3 4 5 6
|
efgsdm |
|- ( A e. dom S <-> ( A e. ( Word W \ { (/) } ) /\ ( A ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` A ) ) ( A ` i ) e. ran ( T ` ( A ` ( i - 1 ) ) ) ) ) |
15 |
14
|
simp1bi |
|- ( A e. dom S -> A e. ( Word W \ { (/) } ) ) |
16 |
8 15
|
syl |
|- ( ph -> A e. ( Word W \ { (/) } ) ) |
17 |
16
|
eldifad |
|- ( ph -> A e. Word W ) |
18 |
|
wrdf |
|- ( A e. Word W -> A : ( 0 ..^ ( # ` A ) ) --> W ) |
19 |
17 18
|
syl |
|- ( ph -> A : ( 0 ..^ ( # ` A ) ) --> W ) |
20 |
|
fzossfz |
|- ( 0 ..^ ( ( # ` A ) - 1 ) ) C_ ( 0 ... ( ( # ` A ) - 1 ) ) |
21 |
|
lencl |
|- ( A e. Word W -> ( # ` A ) e. NN0 ) |
22 |
17 21
|
syl |
|- ( ph -> ( # ` A ) e. NN0 ) |
23 |
22
|
nn0zd |
|- ( ph -> ( # ` A ) e. ZZ ) |
24 |
|
fzoval |
|- ( ( # ` A ) e. ZZ -> ( 0 ..^ ( # ` A ) ) = ( 0 ... ( ( # ` A ) - 1 ) ) ) |
25 |
23 24
|
syl |
|- ( ph -> ( 0 ..^ ( # ` A ) ) = ( 0 ... ( ( # ` A ) - 1 ) ) ) |
26 |
20 25
|
sseqtrrid |
|- ( ph -> ( 0 ..^ ( ( # ` A ) - 1 ) ) C_ ( 0 ..^ ( # ` A ) ) ) |
27 |
1 2 3 4 5 6 7 8 9 10 11
|
efgredlema |
|- ( ph -> ( ( ( # ` A ) - 1 ) e. NN /\ ( ( # ` B ) - 1 ) e. NN ) ) |
28 |
27
|
simpld |
|- ( ph -> ( ( # ` A ) - 1 ) e. NN ) |
29 |
|
fzo0end |
|- ( ( ( # ` A ) - 1 ) e. NN -> ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) |
30 |
28 29
|
syl |
|- ( ph -> ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) |
31 |
12 30
|
eqeltrid |
|- ( ph -> K e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) |
32 |
26 31
|
sseldd |
|- ( ph -> K e. ( 0 ..^ ( # ` A ) ) ) |
33 |
19 32
|
ffvelrnd |
|- ( ph -> ( A ` K ) e. W ) |
34 |
1 2 3 4 5 6
|
efgsdm |
|- ( B e. dom S <-> ( B e. ( Word W \ { (/) } ) /\ ( B ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` B ) ) ( B ` i ) e. ran ( T ` ( B ` ( i - 1 ) ) ) ) ) |
35 |
34
|
simp1bi |
|- ( B e. dom S -> B e. ( Word W \ { (/) } ) ) |
36 |
9 35
|
syl |
|- ( ph -> B e. ( Word W \ { (/) } ) ) |
37 |
36
|
eldifad |
|- ( ph -> B e. Word W ) |
38 |
|
wrdf |
|- ( B e. Word W -> B : ( 0 ..^ ( # ` B ) ) --> W ) |
39 |
37 38
|
syl |
|- ( ph -> B : ( 0 ..^ ( # ` B ) ) --> W ) |
40 |
|
fzossfz |
|- ( 0 ..^ ( ( # ` B ) - 1 ) ) C_ ( 0 ... ( ( # ` B ) - 1 ) ) |
41 |
|
lencl |
|- ( B e. Word W -> ( # ` B ) e. NN0 ) |
42 |
37 41
|
syl |
|- ( ph -> ( # ` B ) e. NN0 ) |
43 |
42
|
nn0zd |
|- ( ph -> ( # ` B ) e. ZZ ) |
44 |
|
fzoval |
|- ( ( # ` B ) e. ZZ -> ( 0 ..^ ( # ` B ) ) = ( 0 ... ( ( # ` B ) - 1 ) ) ) |
45 |
43 44
|
syl |
|- ( ph -> ( 0 ..^ ( # ` B ) ) = ( 0 ... ( ( # ` B ) - 1 ) ) ) |
46 |
40 45
|
sseqtrrid |
|- ( ph -> ( 0 ..^ ( ( # ` B ) - 1 ) ) C_ ( 0 ..^ ( # ` B ) ) ) |
47 |
|
fzo0end |
|- ( ( ( # ` B ) - 1 ) e. NN -> ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) |
48 |
27 47
|
simpl2im |
|- ( ph -> ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) |
49 |
13 48
|
eqeltrid |
|- ( ph -> L e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) |
50 |
46 49
|
sseldd |
|- ( ph -> L e. ( 0 ..^ ( # ` B ) ) ) |
51 |
39 50
|
ffvelrnd |
|- ( ph -> ( B ` L ) e. W ) |
52 |
33 51
|
jca |
|- ( ph -> ( ( A ` K ) e. W /\ ( B ` L ) e. W ) ) |