| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgval.w |  |-  W = ( _I ` Word ( I X. 2o ) ) | 
						
							| 2 |  | efgval.r |  |-  .~ = ( ~FG ` I ) | 
						
							| 3 |  | efgval2.m |  |-  M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) | 
						
							| 4 |  | efgval2.t |  |-  T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) | 
						
							| 5 |  | efgred.d |  |-  D = ( W \ U_ x e. W ran ( T ` x ) ) | 
						
							| 6 |  | efgred.s |  |-  S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) | 
						
							| 7 |  | efgrelexlem.1 |  |-  L = { <. i , j >. | E. c e. ( `' S " { i } ) E. d e. ( `' S " { j } ) ( c ` 0 ) = ( d ` 0 ) } | 
						
							| 8 | 7 | bropaex12 |  |-  ( A L B -> ( A e. _V /\ B e. _V ) ) | 
						
							| 9 |  | n0i |  |-  ( a e. ( `' S " { A } ) -> -. ( `' S " { A } ) = (/) ) | 
						
							| 10 |  | snprc |  |-  ( -. A e. _V <-> { A } = (/) ) | 
						
							| 11 |  | imaeq2 |  |-  ( { A } = (/) -> ( `' S " { A } ) = ( `' S " (/) ) ) | 
						
							| 12 | 10 11 | sylbi |  |-  ( -. A e. _V -> ( `' S " { A } ) = ( `' S " (/) ) ) | 
						
							| 13 |  | ima0 |  |-  ( `' S " (/) ) = (/) | 
						
							| 14 | 12 13 | eqtrdi |  |-  ( -. A e. _V -> ( `' S " { A } ) = (/) ) | 
						
							| 15 | 9 14 | nsyl2 |  |-  ( a e. ( `' S " { A } ) -> A e. _V ) | 
						
							| 16 |  | n0i |  |-  ( b e. ( `' S " { B } ) -> -. ( `' S " { B } ) = (/) ) | 
						
							| 17 |  | snprc |  |-  ( -. B e. _V <-> { B } = (/) ) | 
						
							| 18 |  | imaeq2 |  |-  ( { B } = (/) -> ( `' S " { B } ) = ( `' S " (/) ) ) | 
						
							| 19 | 17 18 | sylbi |  |-  ( -. B e. _V -> ( `' S " { B } ) = ( `' S " (/) ) ) | 
						
							| 20 | 19 13 | eqtrdi |  |-  ( -. B e. _V -> ( `' S " { B } ) = (/) ) | 
						
							| 21 | 16 20 | nsyl2 |  |-  ( b e. ( `' S " { B } ) -> B e. _V ) | 
						
							| 22 | 15 21 | anim12i |  |-  ( ( a e. ( `' S " { A } ) /\ b e. ( `' S " { B } ) ) -> ( A e. _V /\ B e. _V ) ) | 
						
							| 23 | 22 | a1d |  |-  ( ( a e. ( `' S " { A } ) /\ b e. ( `' S " { B } ) ) -> ( ( a ` 0 ) = ( b ` 0 ) -> ( A e. _V /\ B e. _V ) ) ) | 
						
							| 24 | 23 | rexlimivv |  |-  ( E. a e. ( `' S " { A } ) E. b e. ( `' S " { B } ) ( a ` 0 ) = ( b ` 0 ) -> ( A e. _V /\ B e. _V ) ) | 
						
							| 25 |  | fveq1 |  |-  ( c = a -> ( c ` 0 ) = ( a ` 0 ) ) | 
						
							| 26 | 25 | eqeq1d |  |-  ( c = a -> ( ( c ` 0 ) = ( d ` 0 ) <-> ( a ` 0 ) = ( d ` 0 ) ) ) | 
						
							| 27 |  | fveq1 |  |-  ( d = b -> ( d ` 0 ) = ( b ` 0 ) ) | 
						
							| 28 | 27 | eqeq2d |  |-  ( d = b -> ( ( a ` 0 ) = ( d ` 0 ) <-> ( a ` 0 ) = ( b ` 0 ) ) ) | 
						
							| 29 | 26 28 | cbvrex2vw |  |-  ( E. c e. ( `' S " { i } ) E. d e. ( `' S " { j } ) ( c ` 0 ) = ( d ` 0 ) <-> E. a e. ( `' S " { i } ) E. b e. ( `' S " { j } ) ( a ` 0 ) = ( b ` 0 ) ) | 
						
							| 30 |  | sneq |  |-  ( i = A -> { i } = { A } ) | 
						
							| 31 | 30 | imaeq2d |  |-  ( i = A -> ( `' S " { i } ) = ( `' S " { A } ) ) | 
						
							| 32 | 31 | rexeqdv |  |-  ( i = A -> ( E. a e. ( `' S " { i } ) E. b e. ( `' S " { j } ) ( a ` 0 ) = ( b ` 0 ) <-> E. a e. ( `' S " { A } ) E. b e. ( `' S " { j } ) ( a ` 0 ) = ( b ` 0 ) ) ) | 
						
							| 33 | 29 32 | bitrid |  |-  ( i = A -> ( E. c e. ( `' S " { i } ) E. d e. ( `' S " { j } ) ( c ` 0 ) = ( d ` 0 ) <-> E. a e. ( `' S " { A } ) E. b e. ( `' S " { j } ) ( a ` 0 ) = ( b ` 0 ) ) ) | 
						
							| 34 |  | sneq |  |-  ( j = B -> { j } = { B } ) | 
						
							| 35 | 34 | imaeq2d |  |-  ( j = B -> ( `' S " { j } ) = ( `' S " { B } ) ) | 
						
							| 36 | 35 | rexeqdv |  |-  ( j = B -> ( E. b e. ( `' S " { j } ) ( a ` 0 ) = ( b ` 0 ) <-> E. b e. ( `' S " { B } ) ( a ` 0 ) = ( b ` 0 ) ) ) | 
						
							| 37 | 36 | rexbidv |  |-  ( j = B -> ( E. a e. ( `' S " { A } ) E. b e. ( `' S " { j } ) ( a ` 0 ) = ( b ` 0 ) <-> E. a e. ( `' S " { A } ) E. b e. ( `' S " { B } ) ( a ` 0 ) = ( b ` 0 ) ) ) | 
						
							| 38 | 33 37 7 | brabg |  |-  ( ( A e. _V /\ B e. _V ) -> ( A L B <-> E. a e. ( `' S " { A } ) E. b e. ( `' S " { B } ) ( a ` 0 ) = ( b ` 0 ) ) ) | 
						
							| 39 | 8 24 38 | pm5.21nii |  |-  ( A L B <-> E. a e. ( `' S " { A } ) E. b e. ( `' S " { B } ) ( a ` 0 ) = ( b ` 0 ) ) |