Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
|- W = ( _I ` Word ( I X. 2o ) ) |
2 |
|
efgval.r |
|- .~ = ( ~FG ` I ) |
3 |
|
efgval2.m |
|- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
4 |
|
efgval2.t |
|- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
5 |
|
efgred.d |
|- D = ( W \ U_ x e. W ran ( T ` x ) ) |
6 |
|
efgred.s |
|- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
7 |
|
efgrelexlem.1 |
|- L = { <. i , j >. | E. c e. ( `' S " { i } ) E. d e. ( `' S " { j } ) ( c ` 0 ) = ( d ` 0 ) } |
8 |
1 2 3 4
|
efgval2 |
|- .~ = |^| { r | ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) } |
9 |
7
|
relopabiv |
|- Rel L |
10 |
9
|
a1i |
|- ( T. -> Rel L ) |
11 |
|
simpr |
|- ( ( T. /\ f L g ) -> f L g ) |
12 |
|
eqcom |
|- ( ( a ` 0 ) = ( b ` 0 ) <-> ( b ` 0 ) = ( a ` 0 ) ) |
13 |
12
|
2rexbii |
|- ( E. a e. ( `' S " { f } ) E. b e. ( `' S " { g } ) ( a ` 0 ) = ( b ` 0 ) <-> E. a e. ( `' S " { f } ) E. b e. ( `' S " { g } ) ( b ` 0 ) = ( a ` 0 ) ) |
14 |
|
rexcom |
|- ( E. a e. ( `' S " { f } ) E. b e. ( `' S " { g } ) ( b ` 0 ) = ( a ` 0 ) <-> E. b e. ( `' S " { g } ) E. a e. ( `' S " { f } ) ( b ` 0 ) = ( a ` 0 ) ) |
15 |
13 14
|
bitri |
|- ( E. a e. ( `' S " { f } ) E. b e. ( `' S " { g } ) ( a ` 0 ) = ( b ` 0 ) <-> E. b e. ( `' S " { g } ) E. a e. ( `' S " { f } ) ( b ` 0 ) = ( a ` 0 ) ) |
16 |
1 2 3 4 5 6 7
|
efgrelexlema |
|- ( f L g <-> E. a e. ( `' S " { f } ) E. b e. ( `' S " { g } ) ( a ` 0 ) = ( b ` 0 ) ) |
17 |
1 2 3 4 5 6 7
|
efgrelexlema |
|- ( g L f <-> E. b e. ( `' S " { g } ) E. a e. ( `' S " { f } ) ( b ` 0 ) = ( a ` 0 ) ) |
18 |
15 16 17
|
3bitr4i |
|- ( f L g <-> g L f ) |
19 |
11 18
|
sylib |
|- ( ( T. /\ f L g ) -> g L f ) |
20 |
1 2 3 4 5 6 7
|
efgrelexlema |
|- ( g L h <-> E. r e. ( `' S " { g } ) E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) ) |
21 |
|
reeanv |
|- ( E. a e. ( `' S " { f } ) E. r e. ( `' S " { g } ) ( E. b e. ( `' S " { g } ) ( a ` 0 ) = ( b ` 0 ) /\ E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) ) <-> ( E. a e. ( `' S " { f } ) E. b e. ( `' S " { g } ) ( a ` 0 ) = ( b ` 0 ) /\ E. r e. ( `' S " { g } ) E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) ) ) |
22 |
1 2 3 4 5 6
|
efgsfo |
|- S : dom S -onto-> W |
23 |
|
fofn |
|- ( S : dom S -onto-> W -> S Fn dom S ) |
24 |
22 23
|
ax-mp |
|- S Fn dom S |
25 |
|
fniniseg |
|- ( S Fn dom S -> ( r e. ( `' S " { g } ) <-> ( r e. dom S /\ ( S ` r ) = g ) ) ) |
26 |
24 25
|
ax-mp |
|- ( r e. ( `' S " { g } ) <-> ( r e. dom S /\ ( S ` r ) = g ) ) |
27 |
|
fniniseg |
|- ( S Fn dom S -> ( b e. ( `' S " { g } ) <-> ( b e. dom S /\ ( S ` b ) = g ) ) ) |
28 |
24 27
|
ax-mp |
|- ( b e. ( `' S " { g } ) <-> ( b e. dom S /\ ( S ` b ) = g ) ) |
29 |
|
eqtr3 |
|- ( ( ( S ` r ) = g /\ ( S ` b ) = g ) -> ( S ` r ) = ( S ` b ) ) |
30 |
1 2 3 4 5 6
|
efgred |
|- ( ( r e. dom S /\ b e. dom S /\ ( S ` r ) = ( S ` b ) ) -> ( r ` 0 ) = ( b ` 0 ) ) |
31 |
30
|
eqcomd |
|- ( ( r e. dom S /\ b e. dom S /\ ( S ` r ) = ( S ` b ) ) -> ( b ` 0 ) = ( r ` 0 ) ) |
32 |
31
|
3expa |
|- ( ( ( r e. dom S /\ b e. dom S ) /\ ( S ` r ) = ( S ` b ) ) -> ( b ` 0 ) = ( r ` 0 ) ) |
33 |
29 32
|
sylan2 |
|- ( ( ( r e. dom S /\ b e. dom S ) /\ ( ( S ` r ) = g /\ ( S ` b ) = g ) ) -> ( b ` 0 ) = ( r ` 0 ) ) |
34 |
33
|
an4s |
|- ( ( ( r e. dom S /\ ( S ` r ) = g ) /\ ( b e. dom S /\ ( S ` b ) = g ) ) -> ( b ` 0 ) = ( r ` 0 ) ) |
35 |
26 28 34
|
syl2anb |
|- ( ( r e. ( `' S " { g } ) /\ b e. ( `' S " { g } ) ) -> ( b ` 0 ) = ( r ` 0 ) ) |
36 |
|
eqeq2 |
|- ( ( r ` 0 ) = ( s ` 0 ) -> ( ( b ` 0 ) = ( r ` 0 ) <-> ( b ` 0 ) = ( s ` 0 ) ) ) |
37 |
35 36
|
syl5ibcom |
|- ( ( r e. ( `' S " { g } ) /\ b e. ( `' S " { g } ) ) -> ( ( r ` 0 ) = ( s ` 0 ) -> ( b ` 0 ) = ( s ` 0 ) ) ) |
38 |
37
|
reximdv |
|- ( ( r e. ( `' S " { g } ) /\ b e. ( `' S " { g } ) ) -> ( E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) -> E. s e. ( `' S " { h } ) ( b ` 0 ) = ( s ` 0 ) ) ) |
39 |
|
eqeq1 |
|- ( ( a ` 0 ) = ( b ` 0 ) -> ( ( a ` 0 ) = ( s ` 0 ) <-> ( b ` 0 ) = ( s ` 0 ) ) ) |
40 |
39
|
rexbidv |
|- ( ( a ` 0 ) = ( b ` 0 ) -> ( E. s e. ( `' S " { h } ) ( a ` 0 ) = ( s ` 0 ) <-> E. s e. ( `' S " { h } ) ( b ` 0 ) = ( s ` 0 ) ) ) |
41 |
40
|
imbi2d |
|- ( ( a ` 0 ) = ( b ` 0 ) -> ( ( E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) -> E. s e. ( `' S " { h } ) ( a ` 0 ) = ( s ` 0 ) ) <-> ( E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) -> E. s e. ( `' S " { h } ) ( b ` 0 ) = ( s ` 0 ) ) ) ) |
42 |
38 41
|
syl5ibrcom |
|- ( ( r e. ( `' S " { g } ) /\ b e. ( `' S " { g } ) ) -> ( ( a ` 0 ) = ( b ` 0 ) -> ( E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) -> E. s e. ( `' S " { h } ) ( a ` 0 ) = ( s ` 0 ) ) ) ) |
43 |
42
|
rexlimdva |
|- ( r e. ( `' S " { g } ) -> ( E. b e. ( `' S " { g } ) ( a ` 0 ) = ( b ` 0 ) -> ( E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) -> E. s e. ( `' S " { h } ) ( a ` 0 ) = ( s ` 0 ) ) ) ) |
44 |
43
|
impd |
|- ( r e. ( `' S " { g } ) -> ( ( E. b e. ( `' S " { g } ) ( a ` 0 ) = ( b ` 0 ) /\ E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) ) -> E. s e. ( `' S " { h } ) ( a ` 0 ) = ( s ` 0 ) ) ) |
45 |
44
|
rexlimiv |
|- ( E. r e. ( `' S " { g } ) ( E. b e. ( `' S " { g } ) ( a ` 0 ) = ( b ` 0 ) /\ E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) ) -> E. s e. ( `' S " { h } ) ( a ` 0 ) = ( s ` 0 ) ) |
46 |
45
|
reximi |
|- ( E. a e. ( `' S " { f } ) E. r e. ( `' S " { g } ) ( E. b e. ( `' S " { g } ) ( a ` 0 ) = ( b ` 0 ) /\ E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) ) -> E. a e. ( `' S " { f } ) E. s e. ( `' S " { h } ) ( a ` 0 ) = ( s ` 0 ) ) |
47 |
21 46
|
sylbir |
|- ( ( E. a e. ( `' S " { f } ) E. b e. ( `' S " { g } ) ( a ` 0 ) = ( b ` 0 ) /\ E. r e. ( `' S " { g } ) E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) ) -> E. a e. ( `' S " { f } ) E. s e. ( `' S " { h } ) ( a ` 0 ) = ( s ` 0 ) ) |
48 |
16 20 47
|
syl2anb |
|- ( ( f L g /\ g L h ) -> E. a e. ( `' S " { f } ) E. s e. ( `' S " { h } ) ( a ` 0 ) = ( s ` 0 ) ) |
49 |
1 2 3 4 5 6 7
|
efgrelexlema |
|- ( f L h <-> E. a e. ( `' S " { f } ) E. s e. ( `' S " { h } ) ( a ` 0 ) = ( s ` 0 ) ) |
50 |
48 49
|
sylibr |
|- ( ( f L g /\ g L h ) -> f L h ) |
51 |
50
|
adantl |
|- ( ( T. /\ ( f L g /\ g L h ) ) -> f L h ) |
52 |
|
eqid |
|- ( a ` 0 ) = ( a ` 0 ) |
53 |
|
fveq1 |
|- ( b = a -> ( b ` 0 ) = ( a ` 0 ) ) |
54 |
53
|
rspceeqv |
|- ( ( a e. ( `' S " { f } ) /\ ( a ` 0 ) = ( a ` 0 ) ) -> E. b e. ( `' S " { f } ) ( a ` 0 ) = ( b ` 0 ) ) |
55 |
52 54
|
mpan2 |
|- ( a e. ( `' S " { f } ) -> E. b e. ( `' S " { f } ) ( a ` 0 ) = ( b ` 0 ) ) |
56 |
55
|
pm4.71i |
|- ( a e. ( `' S " { f } ) <-> ( a e. ( `' S " { f } ) /\ E. b e. ( `' S " { f } ) ( a ` 0 ) = ( b ` 0 ) ) ) |
57 |
|
fniniseg |
|- ( S Fn dom S -> ( a e. ( `' S " { f } ) <-> ( a e. dom S /\ ( S ` a ) = f ) ) ) |
58 |
24 57
|
ax-mp |
|- ( a e. ( `' S " { f } ) <-> ( a e. dom S /\ ( S ` a ) = f ) ) |
59 |
56 58
|
bitr3i |
|- ( ( a e. ( `' S " { f } ) /\ E. b e. ( `' S " { f } ) ( a ` 0 ) = ( b ` 0 ) ) <-> ( a e. dom S /\ ( S ` a ) = f ) ) |
60 |
59
|
rexbii2 |
|- ( E. a e. ( `' S " { f } ) E. b e. ( `' S " { f } ) ( a ` 0 ) = ( b ` 0 ) <-> E. a e. dom S ( S ` a ) = f ) |
61 |
1 2 3 4 5 6 7
|
efgrelexlema |
|- ( f L f <-> E. a e. ( `' S " { f } ) E. b e. ( `' S " { f } ) ( a ` 0 ) = ( b ` 0 ) ) |
62 |
|
forn |
|- ( S : dom S -onto-> W -> ran S = W ) |
63 |
22 62
|
ax-mp |
|- ran S = W |
64 |
63
|
eleq2i |
|- ( f e. ran S <-> f e. W ) |
65 |
|
fvelrnb |
|- ( S Fn dom S -> ( f e. ran S <-> E. a e. dom S ( S ` a ) = f ) ) |
66 |
24 65
|
ax-mp |
|- ( f e. ran S <-> E. a e. dom S ( S ` a ) = f ) |
67 |
64 66
|
bitr3i |
|- ( f e. W <-> E. a e. dom S ( S ` a ) = f ) |
68 |
60 61 67
|
3bitr4ri |
|- ( f e. W <-> f L f ) |
69 |
68
|
a1i |
|- ( T. -> ( f e. W <-> f L f ) ) |
70 |
10 19 51 69
|
iserd |
|- ( T. -> L Er W ) |
71 |
70
|
mptru |
|- L Er W |
72 |
|
simpl |
|- ( ( a e. W /\ b e. ran ( T ` a ) ) -> a e. W ) |
73 |
|
foelrn |
|- ( ( S : dom S -onto-> W /\ a e. W ) -> E. r e. dom S a = ( S ` r ) ) |
74 |
22 72 73
|
sylancr |
|- ( ( a e. W /\ b e. ran ( T ` a ) ) -> E. r e. dom S a = ( S ` r ) ) |
75 |
|
simprl |
|- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> r e. dom S ) |
76 |
|
simprr |
|- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> a = ( S ` r ) ) |
77 |
76
|
eqcomd |
|- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> ( S ` r ) = a ) |
78 |
|
fniniseg |
|- ( S Fn dom S -> ( r e. ( `' S " { a } ) <-> ( r e. dom S /\ ( S ` r ) = a ) ) ) |
79 |
24 78
|
ax-mp |
|- ( r e. ( `' S " { a } ) <-> ( r e. dom S /\ ( S ` r ) = a ) ) |
80 |
75 77 79
|
sylanbrc |
|- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> r e. ( `' S " { a } ) ) |
81 |
|
simplr |
|- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> b e. ran ( T ` a ) ) |
82 |
76
|
fveq2d |
|- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> ( T ` a ) = ( T ` ( S ` r ) ) ) |
83 |
82
|
rneqd |
|- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> ran ( T ` a ) = ran ( T ` ( S ` r ) ) ) |
84 |
81 83
|
eleqtrd |
|- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> b e. ran ( T ` ( S ` r ) ) ) |
85 |
1 2 3 4 5 6
|
efgsp1 |
|- ( ( r e. dom S /\ b e. ran ( T ` ( S ` r ) ) ) -> ( r ++ <" b "> ) e. dom S ) |
86 |
75 84 85
|
syl2anc |
|- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> ( r ++ <" b "> ) e. dom S ) |
87 |
1 2 3 4 5 6
|
efgsdm |
|- ( r e. dom S <-> ( r e. ( Word W \ { (/) } ) /\ ( r ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` r ) ) ( r ` i ) e. ran ( T ` ( r ` ( i - 1 ) ) ) ) ) |
88 |
87
|
simp1bi |
|- ( r e. dom S -> r e. ( Word W \ { (/) } ) ) |
89 |
88
|
ad2antrl |
|- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> r e. ( Word W \ { (/) } ) ) |
90 |
89
|
eldifad |
|- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> r e. Word W ) |
91 |
1 2 3 4
|
efgtf |
|- ( a e. W -> ( ( T ` a ) = ( f e. ( 0 ... ( # ` a ) ) , g e. ( I X. 2o ) |-> ( a splice <. f , f , <" g ( M ` g ) "> >. ) ) /\ ( T ` a ) : ( ( 0 ... ( # ` a ) ) X. ( I X. 2o ) ) --> W ) ) |
92 |
91
|
simprd |
|- ( a e. W -> ( T ` a ) : ( ( 0 ... ( # ` a ) ) X. ( I X. 2o ) ) --> W ) |
93 |
92
|
frnd |
|- ( a e. W -> ran ( T ` a ) C_ W ) |
94 |
93
|
sselda |
|- ( ( a e. W /\ b e. ran ( T ` a ) ) -> b e. W ) |
95 |
94
|
adantr |
|- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> b e. W ) |
96 |
1 2 3 4 5 6
|
efgsval2 |
|- ( ( r e. Word W /\ b e. W /\ ( r ++ <" b "> ) e. dom S ) -> ( S ` ( r ++ <" b "> ) ) = b ) |
97 |
90 95 86 96
|
syl3anc |
|- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> ( S ` ( r ++ <" b "> ) ) = b ) |
98 |
|
fniniseg |
|- ( S Fn dom S -> ( ( r ++ <" b "> ) e. ( `' S " { b } ) <-> ( ( r ++ <" b "> ) e. dom S /\ ( S ` ( r ++ <" b "> ) ) = b ) ) ) |
99 |
24 98
|
ax-mp |
|- ( ( r ++ <" b "> ) e. ( `' S " { b } ) <-> ( ( r ++ <" b "> ) e. dom S /\ ( S ` ( r ++ <" b "> ) ) = b ) ) |
100 |
86 97 99
|
sylanbrc |
|- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> ( r ++ <" b "> ) e. ( `' S " { b } ) ) |
101 |
95
|
s1cld |
|- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> <" b "> e. Word W ) |
102 |
|
eldifsn |
|- ( r e. ( Word W \ { (/) } ) <-> ( r e. Word W /\ r =/= (/) ) ) |
103 |
|
lennncl |
|- ( ( r e. Word W /\ r =/= (/) ) -> ( # ` r ) e. NN ) |
104 |
102 103
|
sylbi |
|- ( r e. ( Word W \ { (/) } ) -> ( # ` r ) e. NN ) |
105 |
89 104
|
syl |
|- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> ( # ` r ) e. NN ) |
106 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ ( # ` r ) ) <-> ( # ` r ) e. NN ) |
107 |
105 106
|
sylibr |
|- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> 0 e. ( 0 ..^ ( # ` r ) ) ) |
108 |
|
ccatval1 |
|- ( ( r e. Word W /\ <" b "> e. Word W /\ 0 e. ( 0 ..^ ( # ` r ) ) ) -> ( ( r ++ <" b "> ) ` 0 ) = ( r ` 0 ) ) |
109 |
90 101 107 108
|
syl3anc |
|- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> ( ( r ++ <" b "> ) ` 0 ) = ( r ` 0 ) ) |
110 |
109
|
eqcomd |
|- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> ( r ` 0 ) = ( ( r ++ <" b "> ) ` 0 ) ) |
111 |
|
fveq1 |
|- ( s = ( r ++ <" b "> ) -> ( s ` 0 ) = ( ( r ++ <" b "> ) ` 0 ) ) |
112 |
111
|
rspceeqv |
|- ( ( ( r ++ <" b "> ) e. ( `' S " { b } ) /\ ( r ` 0 ) = ( ( r ++ <" b "> ) ` 0 ) ) -> E. s e. ( `' S " { b } ) ( r ` 0 ) = ( s ` 0 ) ) |
113 |
100 110 112
|
syl2anc |
|- ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> E. s e. ( `' S " { b } ) ( r ` 0 ) = ( s ` 0 ) ) |
114 |
74 80 113
|
reximssdv |
|- ( ( a e. W /\ b e. ran ( T ` a ) ) -> E. r e. ( `' S " { a } ) E. s e. ( `' S " { b } ) ( r ` 0 ) = ( s ` 0 ) ) |
115 |
1 2 3 4 5 6 7
|
efgrelexlema |
|- ( a L b <-> E. r e. ( `' S " { a } ) E. s e. ( `' S " { b } ) ( r ` 0 ) = ( s ` 0 ) ) |
116 |
114 115
|
sylibr |
|- ( ( a e. W /\ b e. ran ( T ` a ) ) -> a L b ) |
117 |
|
vex |
|- b e. _V |
118 |
|
vex |
|- a e. _V |
119 |
117 118
|
elec |
|- ( b e. [ a ] L <-> a L b ) |
120 |
116 119
|
sylibr |
|- ( ( a e. W /\ b e. ran ( T ` a ) ) -> b e. [ a ] L ) |
121 |
120
|
ex |
|- ( a e. W -> ( b e. ran ( T ` a ) -> b e. [ a ] L ) ) |
122 |
121
|
ssrdv |
|- ( a e. W -> ran ( T ` a ) C_ [ a ] L ) |
123 |
122
|
rgen |
|- A. a e. W ran ( T ` a ) C_ [ a ] L |
124 |
1
|
fvexi |
|- W e. _V |
125 |
|
erex |
|- ( L Er W -> ( W e. _V -> L e. _V ) ) |
126 |
71 124 125
|
mp2 |
|- L e. _V |
127 |
|
ereq1 |
|- ( r = L -> ( r Er W <-> L Er W ) ) |
128 |
|
eceq2 |
|- ( r = L -> [ a ] r = [ a ] L ) |
129 |
128
|
sseq2d |
|- ( r = L -> ( ran ( T ` a ) C_ [ a ] r <-> ran ( T ` a ) C_ [ a ] L ) ) |
130 |
129
|
ralbidv |
|- ( r = L -> ( A. a e. W ran ( T ` a ) C_ [ a ] r <-> A. a e. W ran ( T ` a ) C_ [ a ] L ) ) |
131 |
127 130
|
anbi12d |
|- ( r = L -> ( ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) <-> ( L Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] L ) ) ) |
132 |
126 131
|
elab |
|- ( L e. { r | ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) } <-> ( L Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] L ) ) |
133 |
71 123 132
|
mpbir2an |
|- L e. { r | ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) } |
134 |
|
intss1 |
|- ( L e. { r | ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) } -> |^| { r | ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) } C_ L ) |
135 |
133 134
|
ax-mp |
|- |^| { r | ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) } C_ L |
136 |
8 135
|
eqsstri |
|- .~ C_ L |