Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
|- W = ( _I ` Word ( I X. 2o ) ) |
2 |
|
efgval.r |
|- .~ = ( ~FG ` I ) |
3 |
|
efgval2.m |
|- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
4 |
|
efgval2.t |
|- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
5 |
|
efgred.d |
|- D = ( W \ U_ x e. W ran ( T ` x ) ) |
6 |
|
efgred.s |
|- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
7 |
|
eldifi |
|- ( A e. ( W \ U_ x e. W ran ( T ` x ) ) -> A e. W ) |
8 |
7 5
|
eleq2s |
|- ( A e. D -> A e. W ) |
9 |
8
|
s1cld |
|- ( A e. D -> <" A "> e. Word W ) |
10 |
|
s1nz |
|- <" A "> =/= (/) |
11 |
|
eldifsn |
|- ( <" A "> e. ( Word W \ { (/) } ) <-> ( <" A "> e. Word W /\ <" A "> =/= (/) ) ) |
12 |
9 10 11
|
sylanblrc |
|- ( A e. D -> <" A "> e. ( Word W \ { (/) } ) ) |
13 |
|
s1fv |
|- ( A e. D -> ( <" A "> ` 0 ) = A ) |
14 |
|
id |
|- ( A e. D -> A e. D ) |
15 |
13 14
|
eqeltrd |
|- ( A e. D -> ( <" A "> ` 0 ) e. D ) |
16 |
|
s1len |
|- ( # ` <" A "> ) = 1 |
17 |
16
|
a1i |
|- ( A e. D -> ( # ` <" A "> ) = 1 ) |
18 |
17
|
oveq2d |
|- ( A e. D -> ( 1 ..^ ( # ` <" A "> ) ) = ( 1 ..^ 1 ) ) |
19 |
|
fzo0 |
|- ( 1 ..^ 1 ) = (/) |
20 |
18 19
|
eqtrdi |
|- ( A e. D -> ( 1 ..^ ( # ` <" A "> ) ) = (/) ) |
21 |
|
rzal |
|- ( ( 1 ..^ ( # ` <" A "> ) ) = (/) -> A. i e. ( 1 ..^ ( # ` <" A "> ) ) ( <" A "> ` i ) e. ran ( T ` ( <" A "> ` ( i - 1 ) ) ) ) |
22 |
20 21
|
syl |
|- ( A e. D -> A. i e. ( 1 ..^ ( # ` <" A "> ) ) ( <" A "> ` i ) e. ran ( T ` ( <" A "> ` ( i - 1 ) ) ) ) |
23 |
1 2 3 4 5 6
|
efgsdm |
|- ( <" A "> e. dom S <-> ( <" A "> e. ( Word W \ { (/) } ) /\ ( <" A "> ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` <" A "> ) ) ( <" A "> ` i ) e. ran ( T ` ( <" A "> ` ( i - 1 ) ) ) ) ) |
24 |
12 15 22 23
|
syl3anbrc |
|- ( A e. D -> <" A "> e. dom S ) |