Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
|- W = ( _I ` Word ( I X. 2o ) ) |
2 |
|
efgval.r |
|- .~ = ( ~FG ` I ) |
3 |
|
efgval2.m |
|- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
4 |
|
efgval2.t |
|- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
5 |
|
efgred.d |
|- D = ( W \ U_ x e. W ran ( T ` x ) ) |
6 |
|
efgred.s |
|- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
7 |
1 2 3 4 5 6
|
efgsval |
|- ( F e. dom S -> ( S ` F ) = ( F ` ( ( # ` F ) - 1 ) ) ) |
8 |
7
|
adantr |
|- ( ( F e. dom S /\ ( ( # ` F ) - 1 ) e. NN ) -> ( S ` F ) = ( F ` ( ( # ` F ) - 1 ) ) ) |
9 |
|
fveq2 |
|- ( i = ( ( # ` F ) - 1 ) -> ( F ` i ) = ( F ` ( ( # ` F ) - 1 ) ) ) |
10 |
|
fvoveq1 |
|- ( i = ( ( # ` F ) - 1 ) -> ( F ` ( i - 1 ) ) = ( F ` ( ( ( # ` F ) - 1 ) - 1 ) ) ) |
11 |
10
|
fveq2d |
|- ( i = ( ( # ` F ) - 1 ) -> ( T ` ( F ` ( i - 1 ) ) ) = ( T ` ( F ` ( ( ( # ` F ) - 1 ) - 1 ) ) ) ) |
12 |
11
|
rneqd |
|- ( i = ( ( # ` F ) - 1 ) -> ran ( T ` ( F ` ( i - 1 ) ) ) = ran ( T ` ( F ` ( ( ( # ` F ) - 1 ) - 1 ) ) ) ) |
13 |
9 12
|
eleq12d |
|- ( i = ( ( # ` F ) - 1 ) -> ( ( F ` i ) e. ran ( T ` ( F ` ( i - 1 ) ) ) <-> ( F ` ( ( # ` F ) - 1 ) ) e. ran ( T ` ( F ` ( ( ( # ` F ) - 1 ) - 1 ) ) ) ) ) |
14 |
1 2 3 4 5 6
|
efgsdm |
|- ( F e. dom S <-> ( F e. ( Word W \ { (/) } ) /\ ( F ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` F ) ) ( F ` i ) e. ran ( T ` ( F ` ( i - 1 ) ) ) ) ) |
15 |
14
|
simp3bi |
|- ( F e. dom S -> A. i e. ( 1 ..^ ( # ` F ) ) ( F ` i ) e. ran ( T ` ( F ` ( i - 1 ) ) ) ) |
16 |
15
|
adantr |
|- ( ( F e. dom S /\ ( ( # ` F ) - 1 ) e. NN ) -> A. i e. ( 1 ..^ ( # ` F ) ) ( F ` i ) e. ran ( T ` ( F ` ( i - 1 ) ) ) ) |
17 |
|
simpr |
|- ( ( F e. dom S /\ ( ( # ` F ) - 1 ) e. NN ) -> ( ( # ` F ) - 1 ) e. NN ) |
18 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
19 |
17 18
|
eleqtrdi |
|- ( ( F e. dom S /\ ( ( # ` F ) - 1 ) e. NN ) -> ( ( # ` F ) - 1 ) e. ( ZZ>= ` 1 ) ) |
20 |
|
eluzfz1 |
|- ( ( ( # ` F ) - 1 ) e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... ( ( # ` F ) - 1 ) ) ) |
21 |
19 20
|
syl |
|- ( ( F e. dom S /\ ( ( # ` F ) - 1 ) e. NN ) -> 1 e. ( 1 ... ( ( # ` F ) - 1 ) ) ) |
22 |
14
|
simp1bi |
|- ( F e. dom S -> F e. ( Word W \ { (/) } ) ) |
23 |
22
|
adantr |
|- ( ( F e. dom S /\ ( ( # ` F ) - 1 ) e. NN ) -> F e. ( Word W \ { (/) } ) ) |
24 |
23
|
eldifad |
|- ( ( F e. dom S /\ ( ( # ` F ) - 1 ) e. NN ) -> F e. Word W ) |
25 |
|
lencl |
|- ( F e. Word W -> ( # ` F ) e. NN0 ) |
26 |
|
nn0z |
|- ( ( # ` F ) e. NN0 -> ( # ` F ) e. ZZ ) |
27 |
|
fzoval |
|- ( ( # ` F ) e. ZZ -> ( 1 ..^ ( # ` F ) ) = ( 1 ... ( ( # ` F ) - 1 ) ) ) |
28 |
24 25 26 27
|
4syl |
|- ( ( F e. dom S /\ ( ( # ` F ) - 1 ) e. NN ) -> ( 1 ..^ ( # ` F ) ) = ( 1 ... ( ( # ` F ) - 1 ) ) ) |
29 |
21 28
|
eleqtrrd |
|- ( ( F e. dom S /\ ( ( # ` F ) - 1 ) e. NN ) -> 1 e. ( 1 ..^ ( # ` F ) ) ) |
30 |
|
fzoend |
|- ( 1 e. ( 1 ..^ ( # ` F ) ) -> ( ( # ` F ) - 1 ) e. ( 1 ..^ ( # ` F ) ) ) |
31 |
29 30
|
syl |
|- ( ( F e. dom S /\ ( ( # ` F ) - 1 ) e. NN ) -> ( ( # ` F ) - 1 ) e. ( 1 ..^ ( # ` F ) ) ) |
32 |
13 16 31
|
rspcdva |
|- ( ( F e. dom S /\ ( ( # ` F ) - 1 ) e. NN ) -> ( F ` ( ( # ` F ) - 1 ) ) e. ran ( T ` ( F ` ( ( ( # ` F ) - 1 ) - 1 ) ) ) ) |
33 |
8 32
|
eqeltrd |
|- ( ( F e. dom S /\ ( ( # ` F ) - 1 ) e. NN ) -> ( S ` F ) e. ran ( T ` ( F ` ( ( ( # ` F ) - 1 ) - 1 ) ) ) ) |