| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgval.w |  |-  W = ( _I ` Word ( I X. 2o ) ) | 
						
							| 2 |  | efgval.r |  |-  .~ = ( ~FG ` I ) | 
						
							| 3 |  | efgval2.m |  |-  M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) | 
						
							| 4 |  | efgval2.t |  |-  T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) | 
						
							| 5 |  | efgred.d |  |-  D = ( W \ U_ x e. W ran ( T ` x ) ) | 
						
							| 6 |  | efgred.s |  |-  S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) | 
						
							| 7 | 1 2 3 4 5 6 | efgsf |  |-  S : { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } --> W | 
						
							| 8 | 7 | fdmi |  |-  dom S = { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } | 
						
							| 9 | 8 | feq2i |  |-  ( S : dom S --> W <-> S : { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } --> W ) | 
						
							| 10 | 7 9 | mpbir |  |-  S : dom S --> W | 
						
							| 11 |  | frn |  |-  ( S : dom S --> W -> ran S C_ W ) | 
						
							| 12 | 10 11 | ax-mp |  |-  ran S C_ W | 
						
							| 13 |  | fviss |  |-  ( _I ` Word ( I X. 2o ) ) C_ Word ( I X. 2o ) | 
						
							| 14 | 1 13 | eqsstri |  |-  W C_ Word ( I X. 2o ) | 
						
							| 15 | 14 | sseli |  |-  ( c e. W -> c e. Word ( I X. 2o ) ) | 
						
							| 16 |  | lencl |  |-  ( c e. Word ( I X. 2o ) -> ( # ` c ) e. NN0 ) | 
						
							| 17 | 15 16 | syl |  |-  ( c e. W -> ( # ` c ) e. NN0 ) | 
						
							| 18 |  | peano2nn0 |  |-  ( ( # ` c ) e. NN0 -> ( ( # ` c ) + 1 ) e. NN0 ) | 
						
							| 19 | 14 | sseli |  |-  ( a e. W -> a e. Word ( I X. 2o ) ) | 
						
							| 20 |  | lencl |  |-  ( a e. Word ( I X. 2o ) -> ( # ` a ) e. NN0 ) | 
						
							| 21 | 19 20 | syl |  |-  ( a e. W -> ( # ` a ) e. NN0 ) | 
						
							| 22 |  | nn0nlt0 |  |-  ( ( # ` a ) e. NN0 -> -. ( # ` a ) < 0 ) | 
						
							| 23 |  | breq2 |  |-  ( b = 0 -> ( ( # ` a ) < b <-> ( # ` a ) < 0 ) ) | 
						
							| 24 | 23 | notbid |  |-  ( b = 0 -> ( -. ( # ` a ) < b <-> -. ( # ` a ) < 0 ) ) | 
						
							| 25 | 22 24 | imbitrrid |  |-  ( b = 0 -> ( ( # ` a ) e. NN0 -> -. ( # ` a ) < b ) ) | 
						
							| 26 | 21 25 | syl5 |  |-  ( b = 0 -> ( a e. W -> -. ( # ` a ) < b ) ) | 
						
							| 27 | 26 | ralrimiv |  |-  ( b = 0 -> A. a e. W -. ( # ` a ) < b ) | 
						
							| 28 |  | rabeq0 |  |-  ( { a e. W | ( # ` a ) < b } = (/) <-> A. a e. W -. ( # ` a ) < b ) | 
						
							| 29 | 27 28 | sylibr |  |-  ( b = 0 -> { a e. W | ( # ` a ) < b } = (/) ) | 
						
							| 30 | 29 | sseq1d |  |-  ( b = 0 -> ( { a e. W | ( # ` a ) < b } C_ ran S <-> (/) C_ ran S ) ) | 
						
							| 31 |  | breq2 |  |-  ( b = d -> ( ( # ` a ) < b <-> ( # ` a ) < d ) ) | 
						
							| 32 | 31 | rabbidv |  |-  ( b = d -> { a e. W | ( # ` a ) < b } = { a e. W | ( # ` a ) < d } ) | 
						
							| 33 | 32 | sseq1d |  |-  ( b = d -> ( { a e. W | ( # ` a ) < b } C_ ran S <-> { a e. W | ( # ` a ) < d } C_ ran S ) ) | 
						
							| 34 |  | breq2 |  |-  ( b = ( d + 1 ) -> ( ( # ` a ) < b <-> ( # ` a ) < ( d + 1 ) ) ) | 
						
							| 35 | 34 | rabbidv |  |-  ( b = ( d + 1 ) -> { a e. W | ( # ` a ) < b } = { a e. W | ( # ` a ) < ( d + 1 ) } ) | 
						
							| 36 | 35 | sseq1d |  |-  ( b = ( d + 1 ) -> ( { a e. W | ( # ` a ) < b } C_ ran S <-> { a e. W | ( # ` a ) < ( d + 1 ) } C_ ran S ) ) | 
						
							| 37 |  | breq2 |  |-  ( b = ( ( # ` c ) + 1 ) -> ( ( # ` a ) < b <-> ( # ` a ) < ( ( # ` c ) + 1 ) ) ) | 
						
							| 38 | 37 | rabbidv |  |-  ( b = ( ( # ` c ) + 1 ) -> { a e. W | ( # ` a ) < b } = { a e. W | ( # ` a ) < ( ( # ` c ) + 1 ) } ) | 
						
							| 39 | 38 | sseq1d |  |-  ( b = ( ( # ` c ) + 1 ) -> ( { a e. W | ( # ` a ) < b } C_ ran S <-> { a e. W | ( # ` a ) < ( ( # ` c ) + 1 ) } C_ ran S ) ) | 
						
							| 40 |  | 0ss |  |-  (/) C_ ran S | 
						
							| 41 |  | simpr |  |-  ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) -> { a e. W | ( # ` a ) < d } C_ ran S ) | 
						
							| 42 |  | fveqeq2 |  |-  ( a = c -> ( ( # ` a ) = d <-> ( # ` c ) = d ) ) | 
						
							| 43 | 42 | cbvrabv |  |-  { a e. W | ( # ` a ) = d } = { c e. W | ( # ` c ) = d } | 
						
							| 44 |  | eliun |  |-  ( c e. U_ x e. W ran ( T ` x ) <-> E. x e. W c e. ran ( T ` x ) ) | 
						
							| 45 |  | fveq2 |  |-  ( x = b -> ( T ` x ) = ( T ` b ) ) | 
						
							| 46 | 45 | rneqd |  |-  ( x = b -> ran ( T ` x ) = ran ( T ` b ) ) | 
						
							| 47 | 46 | eleq2d |  |-  ( x = b -> ( c e. ran ( T ` x ) <-> c e. ran ( T ` b ) ) ) | 
						
							| 48 | 47 | cbvrexvw |  |-  ( E. x e. W c e. ran ( T ` x ) <-> E. b e. W c e. ran ( T ` b ) ) | 
						
							| 49 | 44 48 | bitri |  |-  ( c e. U_ x e. W ran ( T ` x ) <-> E. b e. W c e. ran ( T ` b ) ) | 
						
							| 50 |  | simpl1r |  |-  ( ( ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) /\ c e. W /\ ( # ` c ) = d ) /\ ( b e. W /\ c e. ran ( T ` b ) ) ) -> { a e. W | ( # ` a ) < d } C_ ran S ) | 
						
							| 51 |  | fveq2 |  |-  ( a = b -> ( # ` a ) = ( # ` b ) ) | 
						
							| 52 | 51 | breq1d |  |-  ( a = b -> ( ( # ` a ) < d <-> ( # ` b ) < d ) ) | 
						
							| 53 |  | simprl |  |-  ( ( ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) /\ c e. W /\ ( # ` c ) = d ) /\ ( b e. W /\ c e. ran ( T ` b ) ) ) -> b e. W ) | 
						
							| 54 | 14 53 | sselid |  |-  ( ( ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) /\ c e. W /\ ( # ` c ) = d ) /\ ( b e. W /\ c e. ran ( T ` b ) ) ) -> b e. Word ( I X. 2o ) ) | 
						
							| 55 |  | lencl |  |-  ( b e. Word ( I X. 2o ) -> ( # ` b ) e. NN0 ) | 
						
							| 56 | 54 55 | syl |  |-  ( ( ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) /\ c e. W /\ ( # ` c ) = d ) /\ ( b e. W /\ c e. ran ( T ` b ) ) ) -> ( # ` b ) e. NN0 ) | 
						
							| 57 | 56 | nn0red |  |-  ( ( ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) /\ c e. W /\ ( # ` c ) = d ) /\ ( b e. W /\ c e. ran ( T ` b ) ) ) -> ( # ` b ) e. RR ) | 
						
							| 58 |  | 2rp |  |-  2 e. RR+ | 
						
							| 59 |  | ltaddrp |  |-  ( ( ( # ` b ) e. RR /\ 2 e. RR+ ) -> ( # ` b ) < ( ( # ` b ) + 2 ) ) | 
						
							| 60 | 57 58 59 | sylancl |  |-  ( ( ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) /\ c e. W /\ ( # ` c ) = d ) /\ ( b e. W /\ c e. ran ( T ` b ) ) ) -> ( # ` b ) < ( ( # ` b ) + 2 ) ) | 
						
							| 61 | 1 2 3 4 | efgtlen |  |-  ( ( b e. W /\ c e. ran ( T ` b ) ) -> ( # ` c ) = ( ( # ` b ) + 2 ) ) | 
						
							| 62 | 61 | adantl |  |-  ( ( ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) /\ c e. W /\ ( # ` c ) = d ) /\ ( b e. W /\ c e. ran ( T ` b ) ) ) -> ( # ` c ) = ( ( # ` b ) + 2 ) ) | 
						
							| 63 |  | simpl3 |  |-  ( ( ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) /\ c e. W /\ ( # ` c ) = d ) /\ ( b e. W /\ c e. ran ( T ` b ) ) ) -> ( # ` c ) = d ) | 
						
							| 64 | 62 63 | eqtr3d |  |-  ( ( ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) /\ c e. W /\ ( # ` c ) = d ) /\ ( b e. W /\ c e. ran ( T ` b ) ) ) -> ( ( # ` b ) + 2 ) = d ) | 
						
							| 65 | 60 64 | breqtrd |  |-  ( ( ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) /\ c e. W /\ ( # ` c ) = d ) /\ ( b e. W /\ c e. ran ( T ` b ) ) ) -> ( # ` b ) < d ) | 
						
							| 66 | 52 53 65 | elrabd |  |-  ( ( ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) /\ c e. W /\ ( # ` c ) = d ) /\ ( b e. W /\ c e. ran ( T ` b ) ) ) -> b e. { a e. W | ( # ` a ) < d } ) | 
						
							| 67 | 50 66 | sseldd |  |-  ( ( ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) /\ c e. W /\ ( # ` c ) = d ) /\ ( b e. W /\ c e. ran ( T ` b ) ) ) -> b e. ran S ) | 
						
							| 68 |  | ffn |  |-  ( S : dom S --> W -> S Fn dom S ) | 
						
							| 69 | 10 68 | ax-mp |  |-  S Fn dom S | 
						
							| 70 |  | fvelrnb |  |-  ( S Fn dom S -> ( b e. ran S <-> E. o e. dom S ( S ` o ) = b ) ) | 
						
							| 71 | 69 70 | ax-mp |  |-  ( b e. ran S <-> E. o e. dom S ( S ` o ) = b ) | 
						
							| 72 | 67 71 | sylib |  |-  ( ( ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) /\ c e. W /\ ( # ` c ) = d ) /\ ( b e. W /\ c e. ran ( T ` b ) ) ) -> E. o e. dom S ( S ` o ) = b ) | 
						
							| 73 |  | simprrl |  |-  ( ( ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) /\ c e. W /\ ( # ` c ) = d ) /\ ( ( b e. W /\ c e. ran ( T ` b ) ) /\ ( o e. dom S /\ ( S ` o ) = b ) ) ) -> o e. dom S ) | 
						
							| 74 | 1 2 3 4 5 6 | efgsdm |  |-  ( o e. dom S <-> ( o e. ( Word W \ { (/) } ) /\ ( o ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` o ) ) ( o ` i ) e. ran ( T ` ( o ` ( i - 1 ) ) ) ) ) | 
						
							| 75 | 74 | simp1bi |  |-  ( o e. dom S -> o e. ( Word W \ { (/) } ) ) | 
						
							| 76 |  | eldifi |  |-  ( o e. ( Word W \ { (/) } ) -> o e. Word W ) | 
						
							| 77 | 73 75 76 | 3syl |  |-  ( ( ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) /\ c e. W /\ ( # ` c ) = d ) /\ ( ( b e. W /\ c e. ran ( T ` b ) ) /\ ( o e. dom S /\ ( S ` o ) = b ) ) ) -> o e. Word W ) | 
						
							| 78 |  | simpl2 |  |-  ( ( ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) /\ c e. W /\ ( # ` c ) = d ) /\ ( ( b e. W /\ c e. ran ( T ` b ) ) /\ ( o e. dom S /\ ( S ` o ) = b ) ) ) -> c e. W ) | 
						
							| 79 |  | simprlr |  |-  ( ( ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) /\ c e. W /\ ( # ` c ) = d ) /\ ( ( b e. W /\ c e. ran ( T ` b ) ) /\ ( o e. dom S /\ ( S ` o ) = b ) ) ) -> c e. ran ( T ` b ) ) | 
						
							| 80 |  | simprrr |  |-  ( ( ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) /\ c e. W /\ ( # ` c ) = d ) /\ ( ( b e. W /\ c e. ran ( T ` b ) ) /\ ( o e. dom S /\ ( S ` o ) = b ) ) ) -> ( S ` o ) = b ) | 
						
							| 81 | 80 | fveq2d |  |-  ( ( ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) /\ c e. W /\ ( # ` c ) = d ) /\ ( ( b e. W /\ c e. ran ( T ` b ) ) /\ ( o e. dom S /\ ( S ` o ) = b ) ) ) -> ( T ` ( S ` o ) ) = ( T ` b ) ) | 
						
							| 82 | 81 | rneqd |  |-  ( ( ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) /\ c e. W /\ ( # ` c ) = d ) /\ ( ( b e. W /\ c e. ran ( T ` b ) ) /\ ( o e. dom S /\ ( S ` o ) = b ) ) ) -> ran ( T ` ( S ` o ) ) = ran ( T ` b ) ) | 
						
							| 83 | 79 82 | eleqtrrd |  |-  ( ( ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) /\ c e. W /\ ( # ` c ) = d ) /\ ( ( b e. W /\ c e. ran ( T ` b ) ) /\ ( o e. dom S /\ ( S ` o ) = b ) ) ) -> c e. ran ( T ` ( S ` o ) ) ) | 
						
							| 84 | 1 2 3 4 5 6 | efgsp1 |  |-  ( ( o e. dom S /\ c e. ran ( T ` ( S ` o ) ) ) -> ( o ++ <" c "> ) e. dom S ) | 
						
							| 85 | 73 83 84 | syl2anc |  |-  ( ( ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) /\ c e. W /\ ( # ` c ) = d ) /\ ( ( b e. W /\ c e. ran ( T ` b ) ) /\ ( o e. dom S /\ ( S ` o ) = b ) ) ) -> ( o ++ <" c "> ) e. dom S ) | 
						
							| 86 | 1 2 3 4 5 6 | efgsval2 |  |-  ( ( o e. Word W /\ c e. W /\ ( o ++ <" c "> ) e. dom S ) -> ( S ` ( o ++ <" c "> ) ) = c ) | 
						
							| 87 | 77 78 85 86 | syl3anc |  |-  ( ( ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) /\ c e. W /\ ( # ` c ) = d ) /\ ( ( b e. W /\ c e. ran ( T ` b ) ) /\ ( o e. dom S /\ ( S ` o ) = b ) ) ) -> ( S ` ( o ++ <" c "> ) ) = c ) | 
						
							| 88 |  | fnfvelrn |  |-  ( ( S Fn dom S /\ ( o ++ <" c "> ) e. dom S ) -> ( S ` ( o ++ <" c "> ) ) e. ran S ) | 
						
							| 89 | 69 85 88 | sylancr |  |-  ( ( ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) /\ c e. W /\ ( # ` c ) = d ) /\ ( ( b e. W /\ c e. ran ( T ` b ) ) /\ ( o e. dom S /\ ( S ` o ) = b ) ) ) -> ( S ` ( o ++ <" c "> ) ) e. ran S ) | 
						
							| 90 | 87 89 | eqeltrrd |  |-  ( ( ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) /\ c e. W /\ ( # ` c ) = d ) /\ ( ( b e. W /\ c e. ran ( T ` b ) ) /\ ( o e. dom S /\ ( S ` o ) = b ) ) ) -> c e. ran S ) | 
						
							| 91 | 90 | anassrs |  |-  ( ( ( ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) /\ c e. W /\ ( # ` c ) = d ) /\ ( b e. W /\ c e. ran ( T ` b ) ) ) /\ ( o e. dom S /\ ( S ` o ) = b ) ) -> c e. ran S ) | 
						
							| 92 | 72 91 | rexlimddv |  |-  ( ( ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) /\ c e. W /\ ( # ` c ) = d ) /\ ( b e. W /\ c e. ran ( T ` b ) ) ) -> c e. ran S ) | 
						
							| 93 | 92 | rexlimdvaa |  |-  ( ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) /\ c e. W /\ ( # ` c ) = d ) -> ( E. b e. W c e. ran ( T ` b ) -> c e. ran S ) ) | 
						
							| 94 | 49 93 | biimtrid |  |-  ( ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) /\ c e. W /\ ( # ` c ) = d ) -> ( c e. U_ x e. W ran ( T ` x ) -> c e. ran S ) ) | 
						
							| 95 |  | eldif |  |-  ( c e. ( W \ U_ x e. W ran ( T ` x ) ) <-> ( c e. W /\ -. c e. U_ x e. W ran ( T ` x ) ) ) | 
						
							| 96 | 5 | eleq2i |  |-  ( c e. D <-> c e. ( W \ U_ x e. W ran ( T ` x ) ) ) | 
						
							| 97 | 1 2 3 4 5 6 | efgs1 |  |-  ( c e. D -> <" c "> e. dom S ) | 
						
							| 98 | 96 97 | sylbir |  |-  ( c e. ( W \ U_ x e. W ran ( T ` x ) ) -> <" c "> e. dom S ) | 
						
							| 99 | 95 98 | sylbir |  |-  ( ( c e. W /\ -. c e. U_ x e. W ran ( T ` x ) ) -> <" c "> e. dom S ) | 
						
							| 100 | 1 2 3 4 5 6 | efgsval |  |-  ( <" c "> e. dom S -> ( S ` <" c "> ) = ( <" c "> ` ( ( # ` <" c "> ) - 1 ) ) ) | 
						
							| 101 | 99 100 | syl |  |-  ( ( c e. W /\ -. c e. U_ x e. W ran ( T ` x ) ) -> ( S ` <" c "> ) = ( <" c "> ` ( ( # ` <" c "> ) - 1 ) ) ) | 
						
							| 102 |  | s1len |  |-  ( # ` <" c "> ) = 1 | 
						
							| 103 | 102 | oveq1i |  |-  ( ( # ` <" c "> ) - 1 ) = ( 1 - 1 ) | 
						
							| 104 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 105 | 103 104 | eqtri |  |-  ( ( # ` <" c "> ) - 1 ) = 0 | 
						
							| 106 | 105 | fveq2i |  |-  ( <" c "> ` ( ( # ` <" c "> ) - 1 ) ) = ( <" c "> ` 0 ) | 
						
							| 107 | 106 | a1i |  |-  ( ( c e. W /\ -. c e. U_ x e. W ran ( T ` x ) ) -> ( <" c "> ` ( ( # ` <" c "> ) - 1 ) ) = ( <" c "> ` 0 ) ) | 
						
							| 108 |  | s1fv |  |-  ( c e. W -> ( <" c "> ` 0 ) = c ) | 
						
							| 109 | 108 | adantr |  |-  ( ( c e. W /\ -. c e. U_ x e. W ran ( T ` x ) ) -> ( <" c "> ` 0 ) = c ) | 
						
							| 110 | 101 107 109 | 3eqtrd |  |-  ( ( c e. W /\ -. c e. U_ x e. W ran ( T ` x ) ) -> ( S ` <" c "> ) = c ) | 
						
							| 111 |  | fnfvelrn |  |-  ( ( S Fn dom S /\ <" c "> e. dom S ) -> ( S ` <" c "> ) e. ran S ) | 
						
							| 112 | 69 99 111 | sylancr |  |-  ( ( c e. W /\ -. c e. U_ x e. W ran ( T ` x ) ) -> ( S ` <" c "> ) e. ran S ) | 
						
							| 113 | 110 112 | eqeltrrd |  |-  ( ( c e. W /\ -. c e. U_ x e. W ran ( T ` x ) ) -> c e. ran S ) | 
						
							| 114 | 113 | ex |  |-  ( c e. W -> ( -. c e. U_ x e. W ran ( T ` x ) -> c e. ran S ) ) | 
						
							| 115 | 114 | 3ad2ant2 |  |-  ( ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) /\ c e. W /\ ( # ` c ) = d ) -> ( -. c e. U_ x e. W ran ( T ` x ) -> c e. ran S ) ) | 
						
							| 116 | 94 115 | pm2.61d |  |-  ( ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) /\ c e. W /\ ( # ` c ) = d ) -> c e. ran S ) | 
						
							| 117 | 116 | rabssdv |  |-  ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) -> { c e. W | ( # ` c ) = d } C_ ran S ) | 
						
							| 118 | 43 117 | eqsstrid |  |-  ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) -> { a e. W | ( # ` a ) = d } C_ ran S ) | 
						
							| 119 | 41 118 | unssd |  |-  ( ( d e. NN0 /\ { a e. W | ( # ` a ) < d } C_ ran S ) -> ( { a e. W | ( # ` a ) < d } u. { a e. W | ( # ` a ) = d } ) C_ ran S ) | 
						
							| 120 | 119 | ex |  |-  ( d e. NN0 -> ( { a e. W | ( # ` a ) < d } C_ ran S -> ( { a e. W | ( # ` a ) < d } u. { a e. W | ( # ` a ) = d } ) C_ ran S ) ) | 
						
							| 121 |  | id |  |-  ( d e. NN0 -> d e. NN0 ) | 
						
							| 122 |  | nn0leltp1 |  |-  ( ( ( # ` a ) e. NN0 /\ d e. NN0 ) -> ( ( # ` a ) <_ d <-> ( # ` a ) < ( d + 1 ) ) ) | 
						
							| 123 | 21 121 122 | syl2anr |  |-  ( ( d e. NN0 /\ a e. W ) -> ( ( # ` a ) <_ d <-> ( # ` a ) < ( d + 1 ) ) ) | 
						
							| 124 | 21 | nn0red |  |-  ( a e. W -> ( # ` a ) e. RR ) | 
						
							| 125 |  | nn0re |  |-  ( d e. NN0 -> d e. RR ) | 
						
							| 126 |  | leloe |  |-  ( ( ( # ` a ) e. RR /\ d e. RR ) -> ( ( # ` a ) <_ d <-> ( ( # ` a ) < d \/ ( # ` a ) = d ) ) ) | 
						
							| 127 | 124 125 126 | syl2anr |  |-  ( ( d e. NN0 /\ a e. W ) -> ( ( # ` a ) <_ d <-> ( ( # ` a ) < d \/ ( # ` a ) = d ) ) ) | 
						
							| 128 | 123 127 | bitr3d |  |-  ( ( d e. NN0 /\ a e. W ) -> ( ( # ` a ) < ( d + 1 ) <-> ( ( # ` a ) < d \/ ( # ` a ) = d ) ) ) | 
						
							| 129 | 128 | rabbidva |  |-  ( d e. NN0 -> { a e. W | ( # ` a ) < ( d + 1 ) } = { a e. W | ( ( # ` a ) < d \/ ( # ` a ) = d ) } ) | 
						
							| 130 |  | unrab |  |-  ( { a e. W | ( # ` a ) < d } u. { a e. W | ( # ` a ) = d } ) = { a e. W | ( ( # ` a ) < d \/ ( # ` a ) = d ) } | 
						
							| 131 | 129 130 | eqtr4di |  |-  ( d e. NN0 -> { a e. W | ( # ` a ) < ( d + 1 ) } = ( { a e. W | ( # ` a ) < d } u. { a e. W | ( # ` a ) = d } ) ) | 
						
							| 132 | 131 | sseq1d |  |-  ( d e. NN0 -> ( { a e. W | ( # ` a ) < ( d + 1 ) } C_ ran S <-> ( { a e. W | ( # ` a ) < d } u. { a e. W | ( # ` a ) = d } ) C_ ran S ) ) | 
						
							| 133 | 120 132 | sylibrd |  |-  ( d e. NN0 -> ( { a e. W | ( # ` a ) < d } C_ ran S -> { a e. W | ( # ` a ) < ( d + 1 ) } C_ ran S ) ) | 
						
							| 134 | 30 33 36 39 40 133 | nn0ind |  |-  ( ( ( # ` c ) + 1 ) e. NN0 -> { a e. W | ( # ` a ) < ( ( # ` c ) + 1 ) } C_ ran S ) | 
						
							| 135 | 17 18 134 | 3syl |  |-  ( c e. W -> { a e. W | ( # ` a ) < ( ( # ` c ) + 1 ) } C_ ran S ) | 
						
							| 136 |  | fveq2 |  |-  ( a = c -> ( # ` a ) = ( # ` c ) ) | 
						
							| 137 | 136 | breq1d |  |-  ( a = c -> ( ( # ` a ) < ( ( # ` c ) + 1 ) <-> ( # ` c ) < ( ( # ` c ) + 1 ) ) ) | 
						
							| 138 |  | id |  |-  ( c e. W -> c e. W ) | 
						
							| 139 | 17 | nn0red |  |-  ( c e. W -> ( # ` c ) e. RR ) | 
						
							| 140 | 139 | ltp1d |  |-  ( c e. W -> ( # ` c ) < ( ( # ` c ) + 1 ) ) | 
						
							| 141 | 137 138 140 | elrabd |  |-  ( c e. W -> c e. { a e. W | ( # ` a ) < ( ( # ` c ) + 1 ) } ) | 
						
							| 142 | 135 141 | sseldd |  |-  ( c e. W -> c e. ran S ) | 
						
							| 143 | 142 | ssriv |  |-  W C_ ran S | 
						
							| 144 | 12 143 | eqssi |  |-  ran S = W | 
						
							| 145 |  | dffo2 |  |-  ( S : dom S -onto-> W <-> ( S : dom S --> W /\ ran S = W ) ) | 
						
							| 146 | 10 144 145 | mpbir2an |  |-  S : dom S -onto-> W |