Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
|- W = ( _I ` Word ( I X. 2o ) ) |
2 |
|
efgval.r |
|- .~ = ( ~FG ` I ) |
3 |
|
efgval2.m |
|- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
4 |
|
efgval2.t |
|- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
5 |
|
efgred.d |
|- D = ( W \ U_ x e. W ran ( T ` x ) ) |
6 |
|
efgred.s |
|- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
7 |
|
id |
|- ( f = F -> f = F ) |
8 |
|
fveq2 |
|- ( f = F -> ( # ` f ) = ( # ` F ) ) |
9 |
8
|
oveq1d |
|- ( f = F -> ( ( # ` f ) - 1 ) = ( ( # ` F ) - 1 ) ) |
10 |
7 9
|
fveq12d |
|- ( f = F -> ( f ` ( ( # ` f ) - 1 ) ) = ( F ` ( ( # ` F ) - 1 ) ) ) |
11 |
|
id |
|- ( m = f -> m = f ) |
12 |
|
fveq2 |
|- ( m = f -> ( # ` m ) = ( # ` f ) ) |
13 |
12
|
oveq1d |
|- ( m = f -> ( ( # ` m ) - 1 ) = ( ( # ` f ) - 1 ) ) |
14 |
11 13
|
fveq12d |
|- ( m = f -> ( m ` ( ( # ` m ) - 1 ) ) = ( f ` ( ( # ` f ) - 1 ) ) ) |
15 |
14
|
cbvmptv |
|- ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) = ( f e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( f ` ( ( # ` f ) - 1 ) ) ) |
16 |
6 15
|
eqtri |
|- S = ( f e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( f ` ( ( # ` f ) - 1 ) ) ) |
17 |
|
fvex |
|- ( F ` ( ( # ` F ) - 1 ) ) e. _V |
18 |
10 16 17
|
fvmpt |
|- ( F e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } -> ( S ` F ) = ( F ` ( ( # ` F ) - 1 ) ) ) |
19 |
1 2 3 4 5 6
|
efgsf |
|- S : { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } --> W |
20 |
19
|
fdmi |
|- dom S = { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |
21 |
18 20
|
eleq2s |
|- ( F e. dom S -> ( S ` F ) = ( F ` ( ( # ` F ) - 1 ) ) ) |