Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
|- W = ( _I ` Word ( I X. 2o ) ) |
2 |
|
efgval.r |
|- .~ = ( ~FG ` I ) |
3 |
|
efgval2.m |
|- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
4 |
|
efgval2.t |
|- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
5 |
|
efgred.d |
|- D = ( W \ U_ x e. W ran ( T ` x ) ) |
6 |
|
efgred.s |
|- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
7 |
1 2 3 4 5 6
|
efgsval |
|- ( ( A ++ <" B "> ) e. dom S -> ( S ` ( A ++ <" B "> ) ) = ( ( A ++ <" B "> ) ` ( ( # ` ( A ++ <" B "> ) ) - 1 ) ) ) |
8 |
|
s1cl |
|- ( B e. W -> <" B "> e. Word W ) |
9 |
|
ccatlen |
|- ( ( A e. Word W /\ <" B "> e. Word W ) -> ( # ` ( A ++ <" B "> ) ) = ( ( # ` A ) + ( # ` <" B "> ) ) ) |
10 |
8 9
|
sylan2 |
|- ( ( A e. Word W /\ B e. W ) -> ( # ` ( A ++ <" B "> ) ) = ( ( # ` A ) + ( # ` <" B "> ) ) ) |
11 |
|
s1len |
|- ( # ` <" B "> ) = 1 |
12 |
11
|
oveq2i |
|- ( ( # ` A ) + ( # ` <" B "> ) ) = ( ( # ` A ) + 1 ) |
13 |
10 12
|
eqtrdi |
|- ( ( A e. Word W /\ B e. W ) -> ( # ` ( A ++ <" B "> ) ) = ( ( # ` A ) + 1 ) ) |
14 |
13
|
oveq1d |
|- ( ( A e. Word W /\ B e. W ) -> ( ( # ` ( A ++ <" B "> ) ) - 1 ) = ( ( ( # ` A ) + 1 ) - 1 ) ) |
15 |
|
lencl |
|- ( A e. Word W -> ( # ` A ) e. NN0 ) |
16 |
15
|
nn0cnd |
|- ( A e. Word W -> ( # ` A ) e. CC ) |
17 |
|
ax-1cn |
|- 1 e. CC |
18 |
|
pncan |
|- ( ( ( # ` A ) e. CC /\ 1 e. CC ) -> ( ( ( # ` A ) + 1 ) - 1 ) = ( # ` A ) ) |
19 |
16 17 18
|
sylancl |
|- ( A e. Word W -> ( ( ( # ` A ) + 1 ) - 1 ) = ( # ` A ) ) |
20 |
16
|
addid2d |
|- ( A e. Word W -> ( 0 + ( # ` A ) ) = ( # ` A ) ) |
21 |
19 20
|
eqtr4d |
|- ( A e. Word W -> ( ( ( # ` A ) + 1 ) - 1 ) = ( 0 + ( # ` A ) ) ) |
22 |
21
|
adantr |
|- ( ( A e. Word W /\ B e. W ) -> ( ( ( # ` A ) + 1 ) - 1 ) = ( 0 + ( # ` A ) ) ) |
23 |
14 22
|
eqtrd |
|- ( ( A e. Word W /\ B e. W ) -> ( ( # ` ( A ++ <" B "> ) ) - 1 ) = ( 0 + ( # ` A ) ) ) |
24 |
23
|
fveq2d |
|- ( ( A e. Word W /\ B e. W ) -> ( ( A ++ <" B "> ) ` ( ( # ` ( A ++ <" B "> ) ) - 1 ) ) = ( ( A ++ <" B "> ) ` ( 0 + ( # ` A ) ) ) ) |
25 |
|
simpl |
|- ( ( A e. Word W /\ B e. W ) -> A e. Word W ) |
26 |
8
|
adantl |
|- ( ( A e. Word W /\ B e. W ) -> <" B "> e. Word W ) |
27 |
|
1nn |
|- 1 e. NN |
28 |
11 27
|
eqeltri |
|- ( # ` <" B "> ) e. NN |
29 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ ( # ` <" B "> ) ) <-> ( # ` <" B "> ) e. NN ) |
30 |
28 29
|
mpbir |
|- 0 e. ( 0 ..^ ( # ` <" B "> ) ) |
31 |
30
|
a1i |
|- ( ( A e. Word W /\ B e. W ) -> 0 e. ( 0 ..^ ( # ` <" B "> ) ) ) |
32 |
|
ccatval3 |
|- ( ( A e. Word W /\ <" B "> e. Word W /\ 0 e. ( 0 ..^ ( # ` <" B "> ) ) ) -> ( ( A ++ <" B "> ) ` ( 0 + ( # ` A ) ) ) = ( <" B "> ` 0 ) ) |
33 |
25 26 31 32
|
syl3anc |
|- ( ( A e. Word W /\ B e. W ) -> ( ( A ++ <" B "> ) ` ( 0 + ( # ` A ) ) ) = ( <" B "> ` 0 ) ) |
34 |
|
s1fv |
|- ( B e. W -> ( <" B "> ` 0 ) = B ) |
35 |
34
|
adantl |
|- ( ( A e. Word W /\ B e. W ) -> ( <" B "> ` 0 ) = B ) |
36 |
24 33 35
|
3eqtrd |
|- ( ( A e. Word W /\ B e. W ) -> ( ( A ++ <" B "> ) ` ( ( # ` ( A ++ <" B "> ) ) - 1 ) ) = B ) |
37 |
7 36
|
sylan9eqr |
|- ( ( ( A e. Word W /\ B e. W ) /\ ( A ++ <" B "> ) e. dom S ) -> ( S ` ( A ++ <" B "> ) ) = B ) |
38 |
37
|
3impa |
|- ( ( A e. Word W /\ B e. W /\ ( A ++ <" B "> ) e. dom S ) -> ( S ` ( A ++ <" B "> ) ) = B ) |