| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reefcl |
|- ( A e. RR -> ( exp ` A ) e. RR ) |
| 2 |
|
rehalfcl |
|- ( A e. RR -> ( A / 2 ) e. RR ) |
| 3 |
2
|
reefcld |
|- ( A e. RR -> ( exp ` ( A / 2 ) ) e. RR ) |
| 4 |
3
|
sqge0d |
|- ( A e. RR -> 0 <_ ( ( exp ` ( A / 2 ) ) ^ 2 ) ) |
| 5 |
2
|
recnd |
|- ( A e. RR -> ( A / 2 ) e. CC ) |
| 6 |
|
2z |
|- 2 e. ZZ |
| 7 |
|
efexp |
|- ( ( ( A / 2 ) e. CC /\ 2 e. ZZ ) -> ( exp ` ( 2 x. ( A / 2 ) ) ) = ( ( exp ` ( A / 2 ) ) ^ 2 ) ) |
| 8 |
5 6 7
|
sylancl |
|- ( A e. RR -> ( exp ` ( 2 x. ( A / 2 ) ) ) = ( ( exp ` ( A / 2 ) ) ^ 2 ) ) |
| 9 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 10 |
|
2cn |
|- 2 e. CC |
| 11 |
|
2ne0 |
|- 2 =/= 0 |
| 12 |
|
divcan2 |
|- ( ( A e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( 2 x. ( A / 2 ) ) = A ) |
| 13 |
10 11 12
|
mp3an23 |
|- ( A e. CC -> ( 2 x. ( A / 2 ) ) = A ) |
| 14 |
9 13
|
syl |
|- ( A e. RR -> ( 2 x. ( A / 2 ) ) = A ) |
| 15 |
14
|
fveq2d |
|- ( A e. RR -> ( exp ` ( 2 x. ( A / 2 ) ) ) = ( exp ` A ) ) |
| 16 |
8 15
|
eqtr3d |
|- ( A e. RR -> ( ( exp ` ( A / 2 ) ) ^ 2 ) = ( exp ` A ) ) |
| 17 |
4 16
|
breqtrd |
|- ( A e. RR -> 0 <_ ( exp ` A ) ) |
| 18 |
|
efne0 |
|- ( A e. CC -> ( exp ` A ) =/= 0 ) |
| 19 |
9 18
|
syl |
|- ( A e. RR -> ( exp ` A ) =/= 0 ) |
| 20 |
1 17 19
|
ne0gt0d |
|- ( A e. RR -> 0 < ( exp ` A ) ) |